
A Simple Strategy to Provable Invariance via
Orbit Mapping

Kanchana Vaishnavi Gandikota1, Jonas Geiping2, Zorah Lähner1, Adam
Czapliński1, Michael Möller1

1 University of Siegen,2 University of Maryland

Abstract. Many applications require robustness, or ideally invariance, of
neural networks to certain transformations of input data. Most commonly,
this requirement is addressed by training data augmentation, using adver-
sarial training, or defining network architectures that include the desired
invariance by design. In this work, we propose a method to make network
architectures provably invariant with respect to group actions by choosing
one element from a (possibly continuous) orbit based on a fixed criterion.
In a nutshell, we intend to ’undo’ any possible transformation before
feeding the data into the actual network. Further, we empirically analyze
the properties of different approaches which incorporate invariance via
training or architecture, and demonstrate the advantages of our method
in terms of robustness and computational efficiency. In particular, we
investigate the robustness with respect to rotations of images (which can
hold up to discretization artifacts) as well as the provable orientation and
scaling invariance of 3D point cloud classification.

1 Introduction

Deep neural networks have revolutionized the field of computer vision over the
past decade. Yet, deep networks trained in a straight-forward way often lack
desired robustness. In image classification, for instance, rotational, scale, and shift
invariance are often highly desirable properties. While training deep networks
with millions of realistic images in datasets like Imagenet [1] confers some degree
of in/equi-variance [2,3,4], these properties however, cannot be guaranteed. On
the contrary, networks are susceptible to adversarial attacks with respect to these
transformations (see e.g. [5,6,7,8]), and small perturbations can significantly
affect their predictions. To counteract this behavior, the two major directions of
research are to either modify the training procedure or the network architecture.
Modifications of the training procedure replace the common training of a network
G with parameters θ on training examples (xi, yi) via a loss function L,

min
θ

∑
examples i

L(G(xi; θ); yi), (1)

with a loss function that considers all perturbations in a given set S of transfor-
mations to be invariant towards. The most common choices are taking the mean
loss of all predictions {G(g(xi); θ) | g ∈ S} (training with data augmentation), or



2 Gandikota et al.

a) Samples of the orbit
b) Orbit mapping

element

Fig. 1: (Left) Picture of a cat in 4 different rotation samples from the continuous orbit of
rotations. Our orbit mapping selects the element with mean gradient direction (marked
in red) along circle pointing upwards. (Right) Softmax probabilities of the true label
when rotating an image by 0◦ − 360◦. Our method (in blue) is robust for any angle,
which cannot be guaranteed through data augmentations (green) or adv. training (red).

the maximum loss among all predictions (adversarial training). However, such
training schemes cannot guarantee provable invariance. In particular, training
with data augmentation is far from being robust to transformations as illustrated
in Fig. 1. The plot shows the softmax probabilities of the true label when feeding
the exemplary image at rotations ranging from 0 to 2π into a network trained with
rotational augmentation (green), adversarial training (red) and undoing rotations
using a learned network (black). As we can see, rotational data augmentation
is not sufficient to truly make a classification network robust towards rotations,
and even the significantly more expensive adversarial training shows instabilities.

While modifications of the training scheme remain the best option for complex
or hard-to-characterize transformations, more structured transformations, e.g.,
those arising from a group action, allow modifications to the network architecture
to yield provable invariance. As opposed to previous works that largely rely on
the ability to enlist all transformations of an input x (i.e., assume a finite orbit),
we propose to make neural networks invariant by selecting a specific element from
a (possibly infinite) orbit generated by a group action, through an application-
specific orbit mapping. Simply put, we undo and fix the transformation or pose.
Our proposed approach is significantly easier to train than adversarial training
methods while being at least equally performant, robust, and computationally
cheaper. We illustrate these findings on the rotation invariant classification of
images (on which discretization artifacts from the interpolation after any rotation
play a crucial role) as well as on the scale, rotation, and translation invariant
classification of 3D point clouds. Our contributions can be summarized as follows:
– We present orbit mapping, a simple way to adapt neural networks to be in-(or

equi)variant to transformations from sets S associated with a group action.
– We propose a gradient based orbit mapping strategy for image rotations,

which can provably select unique orientation for continuous image models.
– Our proposed orbit mapping improves robustness of standard networks to

transformations even without additional changes in training or architecture.
– Existing invariant approaches also demonstrate gain in robustness to discrete

image rotations when combined with orbit mapping.
– We demonstrate orbit mappings to provable scale and orientation invariant

3D point cloud classification using well known scale normalization and PCA.



A Simple Strategy to Provable Invariance 3

2 Related Work

Several approaches have been developed in the literature to encourage models to
exhibit invariance or robustness to desired transformations of data. These include
i) data augmentation using desired transformations, ii) regularization to encourage
network output to be robust to transformations on the input [9], iii) adversarial
training [10,11] and regularization [12], iv) unsupervised or self-supervised pre-
training to learn transformation robust representations [13,14,15,16,17], v) param-
eterized learning of augmentations to learn invariances from training data[18,19],
vi) use of hand-crafted invariant shallow [20,21,22,23,24] or deep [25,26,27] fea-
tures for downstream classification tasks vii) incorporating desired invariance
properties in to the network design [28,29,30,31,32], and viii) train time/test
time data transformation. Recent works [33,34] have also explored certifying
geometric robustness of networks. The approaches i)-v) can improve robustness
but cannot yield provable invariance to transformations. Hand-crafting features
can yield desired invariance, but is difficult and often sacrifices accuracy. Provable
invariance to a finite number of transformations is achievable by applying all such
transformations to the each input data point and pooling the corresponding fea-
tures [35,36]. While this strategy can even be applied only during test time, it can
not be extended to sets with infinitely many transformations. Recent approaches
[28,37,30] incorporate in-/equivariances when the desired transformations of the
data can be formulated as a group action, e.g. enforcing equivariance in each
layer separately. Layer wise approaches for equivariance to finite groups such as
[28] typically use all possible transformations at each layer.
Canonicalization Closely related to our approach are methods which align
input to a normalized or canonical pose. The use of PCA or scale renormalization
are well known approaches to normalizing point clouds. However, PCA-based
pose canonicalization is known to suffer from ambiguities, and learning based
approaches [38,32,39] have been proposed for disambiguation. Several recent
works directly leverage deep learning for 3d pose canonicalization, for example
training with ground truth poses [40,41] or self-supervised learning [42,43,44]. For
2D images, PCA-based canonicalization is possible only with binary images [45];
the use of Radon transformations [46] requires an expensive, fine discretization of
continuous rotations. The use of spatial transformer networks [47] is an alternate
learning based approach to 2D/3D pose normalization which can be used along
with an application-dependent coordinate transformation [48,49]. Such learning-
based approaches, however, require additional training with data augmentation
and cannot guarantee invariance. Since our orbit mappings essentially select a
canonical group orbit element, our work can be interpreted as a formalization
of canonicalization for group transformations. In contrast to learning based ap-
proaches, we select a canonical element from the orbit using simple analytical
solutions, which can improve robustness even without data augmentations.
Provable Rotational In-/equivariance in 2D Several works [26,27,28,50,51,52]
have considered layer wise equivariance to discrete rotations using multiple rotated
versions of filters at each layer, which was formalized using group convolutions
in [28]. While [28,50,51,52] learn these filters by training, [26,27] make use of



4 Gandikota et al.

rotated and scaled copies of fixed wavelet filters at each layer. For equivariance
to continuous rotations, Worrall et al. [29] utilize circular harmonic filters at
each layer. All these layer wise approaches for group equivariance in images were
unified in a single framework in [30]. Instead of layer-wise approaches, [53,36,54]
pool the features of multiple rotated copies of images input to the network.
Rotation Invariance in 3D Due to the different representations of 3D data (e.g.
voxels, point clouds, meshes), many strategies exist. Some techniques for image
invariances can be adapted to voxel representations, e.g. probing several rotations
at test time [55,56], use of rotationally equivariant convolution kernels [57,58,59].
Spatial transformers have also been used to learn 3D pose normalization, e.g. in
the classical PointNet architecture [60], and its extension PointNet++ [61] which
additionally considers hierarchical and neighborhood information. While point
clouds do not suffer from discretization artifacts after rotations, they struggle
with less clear neighborhood information due to unordered coordinate lists. [62]
solve this by adding hierarchical graph connections to point clouds and using
graph convolutions. However, the features learned using graph convolutions still
depend on the rotation of the input data. [63,64] propose graph convolution
networks equivariant to isometric transformations. [65,66] project point clouds
onto 2D sphere and employ spherical convolutions to achieve rotational equiv-
ariance. [67] and [68] achieve rotation invariance on point clouds by considering
pairs of features in the tangent plane of each point. While local operations and
convolutions on the surface of triangular meshes are invariant to global rotations
by definition [69], they however do not capture global information. MeshCNN [70]
addresses this by adding pooling operations through edge collapse. [71] defines a
representation independent network structure based on heat diffusion which can
balance between local and global information.

3 Proposed Approach

Our idea is straightforward. We make neural networks invariant by consistently
selecting a fixed element from the orbit of group transformations, i.e, we modify
the input pose such that every element from the orbit of transformations maps to
the same canonical element. For example, different rotated versions of an image
are mapped to have the same orientation as visualized in Fig. 2. In conjunction
with such orbit mapping, any standard network architecture can achieve provable
invariance. In the following, we formalize our approach to achieve invariance.

3.1 Invariant Networks w.r.t. Group Actions

We consider a network G to be a function G : X ×Rp → Y that maps data x ∈ X
from some suitable input space X to some prediction G(x; θ) ∈ Y in an output
space Y where the way this mapping is performed depends on parameters θ ∈ Rp.
The question is how, for a given set S ⊂ {g : X → X} of transformations of the
input data, we can achieve the invariance of G to S defined as

G(g(x); θ) = G(x; θ) ∀x ∈ X , g ∈ S, θ ∈ Rp. (2)



A Simple Strategy to Provable Invariance 5

The invariance of a network with respect to transformations in S is of particular
interest when S induces a group action1 on X , which is what we will assume about
S for the remainder of this paper. Of particular importance for the construction
of invariant networks, is the set of all possible transformations of input data x,

S · x = {g(x) | g ∈ S}, (3)

which is called the orbit of x. A basic observation for constructing invariant
networks is that any network acting on the orbit of the input is automatically
invariant to transformations in S:

Fact 1 Characterization of Invariant Functions via the Orbit: Let S
define a group action on X . A network G : X × Rp → Y is invariant under the
group action of S if and only if it can be written as G(x; θ) = G1(S · x; θ) for
some other network G1 : 2X × Rp → Y.

The above observation is based on the fact that S · x = S · g(x) holds for any
g ∈ S, provided that S is a group. Although not taking the general perspective
of Fact 1, approaches, like [36], which integrate (or sum over finite elements of)
the mappings of G over a (discrete) group can be interpreted as instances of
Fact 1 where G1 corresponds to the summation. Similar strategies of applying all
transformations in S to the input x can be pursued for the design of equivariant
networks, see Appendix A.

3.2 Orbit Mappings

While Fact 1 is stated for general (even infinite) groups, realizations of such
constructions from the literature often assume a finite orbit. In this work we
would like to include an efficient solution even for cases in which the orbit is
not finite, and utilize Fact 1 in the most straight-forward way: We propose to
construct provably invariant networks G(x; θ) = G1(S · x; θ) by simply using an

orbit mapping h : {S · x | x ∈ X} → X ,

which uniquely selects a particular element from an orbit as a first layer in G1.
Subsequently, we can proceed with any standard network architecture and Fact 1
still guarantees the desired invariance. A key in designing instances of orbit
mappings is that they should not require enlisting all elements of S · x in order
to evaluate h(S · x). Let us provide more concrete examples of orbit mappings.

Example 1 (Mean-subtraction). A common approach in data classification tasks
is to first normalize the input by subtracting its mean. Considering X = Rn and
S = {g : Rn → Rn | g(x) = x+a1, for some a ∈ R}, with 1 ∈ Rn being a vector
of all ones, input-mean-subtraction is an orbit mapping that selects the unique
element from any S · x which has zero mean.

1
A (left) group action of a group S with the identity element e, on a set X is a map σ : S×X → X,
that satisfies i) σ(e, x) = x and ii) σ(g, σ(h, x)) = σ(gh, x), ∀g, h ∈ S and ∀x ∈ X. When the
action being considered is clear from the context, we write g(x) instead of σ(g, x).



6 Gandikota et al.

Fig. 2: Images of different orientations (top) are consistently aligned with the proposed
gradient-based orbit mapping (bottom).

Example 2 (Permutation invariance via sorting). Consider X = Rn, and S
to be all permutations of vectors in Rn, i.e., S = {s ∈ {0, 1}n×n |

∑
i si,j =

1 ∀j,
∑

j si,j = 1 ∀i}. We could define an orbit mapping that selects the element
from an orbit whose entries are sorted by magnitude in an ascending order.

With the very natural condition that orbit mappings really select an element
from the orbit, i.e., h(S ·x) ∈ S ·x, we can readily construct equivariant networks
by applying the inverse mapping, see Appendix A. In our Example 2, undoing
the sort operation at the end of the network allows to transfer from an invariant,
to an equivariant network.

As a final note, our concept of orbit mappings can further be generalized by h
not mapping to the input space X , but to a different representation, which can be
beneficial for particular, complex groups. In geometry processing, for instance, an
important group action are isometric deformations of shapes. A common strategy
to handle these (c.f. [72]) is to identify any shape with the eigenfunctions of its
Laplace-Beltrami operator [73], which represents a natural (generalized) orbit
mapping. We refer to [74,75,76] for exemplary deep learning applications.

4 Applications

We will now present two specific instances of orbit mappings for handling continu-
ous rotations of images as well as for invariances in 3D point cloud classification.

4.1 Invariance to continous image rotations

Images as functions Let us consider the important example of invariance to
continuous rotations of images. To do so, consider X ⊂ {u : Ω ⊂ R2 → R} to
represent images as functions. For the sake of simplicity, we consider grayscale
images only, but this extends to color images in a straight-forward way. In our
notation z ∈ R2 represents spatial coordinates of an image (to avoid an overlap
with our previous x ∈ X , which we used for the input of a network). We set

S = {g : X → X | g ◦ u(z) = u(r(α)z), for α ∈ R},

and r(α) =

(
cos(α) − sin(α)
sin(α) cos(α)

)
.

(4)



A Simple Strategy to Provable Invariance 7

As S has infinitely many elements, approaches that worked well for rotations by
90 degrees like [28] are not applicable anymore. We instead propose to uniquely
select an element from the continuous orbit of rotation g ∈ S by choosing a
rotation that makes the average gradient of the image

∫
Z
∇(g ◦ u)(z) dz over a

suitable set Z, e.g. a circle around the image center point upwards. It holds that

∇(g ◦ u)(z) = rT (α)∇u (r(α)z) such that∫
Z

∇(g ◦ u)(z)dz =

∫
Z

rT (α)∇u (r(α)z) dz.

Substituting φ = r(α)z, we obtain∫
Z

rT (α)∇u (r(α)z) dz =

∫
rT (α)Z

rT (α)∇u (φ) dφ = rT (α)

∫
Z

∇u (φ) dφ (5)

where we used that Z is rotationally invariant. Thus, choosing a rotation that
makes

∫
Z
∇(g ◦ u)(z) dz point upwards is equivalent to solving

r(α̂) = argmaxr(α)

〈(
1
0

)
, rT (α)

∫
Z

∇u(φ) dφ

〉
(6)

whose solution is given by α̂ such that(
cos α̂
sin α̂

)
=

( ∫
Z
∇u(z) dz

∥
∫
Z
∇u(z) dz∥

)
. (7)

Note that (7) yields unique solution to the maximization problem. Since a consis-
tent pose is always selected2, it is an invariant mapping. When

∫
Z
∇u(z) dz = 0,

any g ∈ S maximizes (6). However, numerically
∫
Z
∇u(z) dz rarely evaluates to

exact zero and its magnitude of determines the stability of orbit mapping.
Discretization For a discrete (grayscale) image given a matrix ũ ∈ Rny×nx ,
we first apply Gaussian blur with a standard deviation of σ = 1.5 (to reduce
the effect of noise and create a smooth image), and subsequently construct an
underlying continuous function u : Ω ⊂ R2 → R by bilinear interpolation. For
the set Z we choose two circles of radii 0.05 and 0.4 (for Ω being normalized
to [0, 1]2). We approximate the integral by a sum over finite evaluations of the
derivative along each circle, using exact differentiation of the continuous image
model. This strategy can stabilize arbitrary rotations successfully as illustrated
in Fig. 2. However, in practice, the magnitude of

∫
Z
∇u(z) dz and interpolation

artifacts affect the stability of the orbit mapping. We analyze the stability of the
proposed gradient based orbit-mapping for discrete images in Appendix C, where
we observe that use of forward or central differences to approximate gradients
further deteriorates the stability of orbit mapping. Since the orbit mapping for

2 Note that rT (α) = r(−α), therefore if the predicted rotation for u(z) is β, then for
u(r(γ)z), it is β − γ, i.e the same element is consistently selected.



8 Gandikota et al.

Method OM
(Ours) CIFAR10 HAM10000 CUB200

Clean Avg. Worst Clean Avg. Worst Clean Avg. Worst

Std.
✗ 93.98 40.06 1.31 93.82 91.73 82.52 77.41 53.45 8.07
✓ Train+Test 87.99 84.12 68.60 93.31 91.38 87.96 71.19 71.56 58.80

RA
✗ 85.54 75.99 44.71 93.30 90.81 82.30 69.89 70.12 41.01
✓ Train+Test 85.40 81.82 71.09 93.41 92.13 88.55 70.35 70.72 57.54

STN ✗ 83.74 78.86 54.03 – – – – – –
ETN ✗ 84.39 80.30 64.08 92.47 90.85 84.32 64.14 66.95 52.85
Adv. ✗ 69.32 68.54 50.21 92.28 91.87 85.04 64.54 64.07 42.82
Mixed ✗ 91.15 68.37 17.15 93.71 92.13 84.53 68.56 65.91 42.87
Adv.-KL ✗ 72.28 70.29 51.05 92.54 91.79 85.42 64.47 64.65 43.04
Adv.-ALP ✗ 71.25 70.30 52.29 92.89 91.84 85.98 64.63 64.34 43.63

TIpool
✗ 93.56 66.46 20.22 93.19 91.87 88.16 76.80 74.90 59.04
✓ Train+Test 91.94 88.77 76.26 93.83 92.05 89.81 76.82 77.18 69.19

TIpool-RA
✗ 91.40 84.65 67.28 93.39 91.87 88.12 73.47 74.71 62.82
✓ Train+Test 90.47 87.92 80.07 93.68 92.78 89.30 74.78 75.89 67.78

Table 1: Comparison of orbit mapping (OM) with training and architecture based meth-
ods. Robustness to rotations is compared using the average and worst case accuracies
over 5 runs with test images rotated in steps of 1◦ using bilinear interpolation.

discrete images has instabilities, exact invariance to rotations cannot be guaran-
teed. Even when the integral values are large leading to a stable orbit mapping,
our approach does not need to give the same rotation angle for semantically
similar content, for example, different cars are not necessarily rotated to have the
same orientation. Due to these reasons, our approach can further benefit from
augmentation.

Experiments To evaluate our approach, we use orbit mapping in conjunc-
tion with image classification networks on three datasets: On CIFAR10, we
train a Resnet-18 [77] from scratch. On the HAM10000 skin image dataset [78],
we finetune an NFNet-F0 network [79], and on CUB-200 [80] we finetune a
Resnet-50 [77], both pretrained on ImageNet. While the datasets CIFAR10 and
CUB-200 have an inherent variance in orientation, for the HAM10000 skin lesion
classification, exact rotation invariance is desirable. Finally, we also perform
experiments with RotMNIST using state of the art E2CNN network[30]. The
details of the protocol used for training all our networks as well as some addi-
tional experiments are provided in the Appendix E. We compare with following
approaches on CIFAR10, HAM10000, and CUB-200: i) adversarial training:
minθ

∑
examples i L(G(x̂i; θ); yi), for x̂i = argmaxz∈S·xi L(G(z); yi). This is ap-

proximated by selecting the worst out of 10 different random rotations for each
image in every iteration, following [10]. It is referred to as Adv. in Tab. 1. ii) mixed
mode training: minθ

∑
examples i L(G(x̂i; θ); yi) + L(G(xi; θ); yi) which uses both

natural and adversarial examples x̂i. iii) adversarial training with regularization:
Use of adversarial logit pairing and KL-divergence regularizers [12] along with
adversarial training (indicated as Adv.-ALP and Adv.-KL in Tab. 1):

a) adversarial logit pairing (ALP): RALP (G, xi, yi) = ∥G(xi; θ)− G(x̂i; θ)∥22 ,
b) KL-divergence:RKL(G, xi, yi) = DKL(G(xi; θ)||G(x̂i; θ)).

iv) transformation invariant pooling (TIpool): which is a provably invariant ap-
proach for discrete rotations [36], where the features of multiple rotated copies of
input image are pooled before the final classification. We use 4 rotated copies



A Simple Strategy to Provable Invariance 9

Train OM Clean
Average Worst-case

Nearest Bilinear Bicubic Nearest Bilinear Bicubic

Std.
✗ 93.98±0.32 35.12±0.81 40.06±0.44 42.81±0.50 0.79±0.38 1.31±0.13 2.22±0.17
✓ Train+Test 87.99±0.43 72.40±0.33 84.12±0.55 86.61±0.49 34.57±0.94 68.60±0.81 74.49±0.84

RA
✗ 85.54±0.72 80.47±0.74 75.99±0.72 79.47±0.65 45.50±0.83 44.71±0.74 50.50±0.78
✓ Test 79.26±0.42 74.93±0.51 69.31±0.65 73.94±0.63 48.93±0.75 52.18±0.91 58.69±0.78
✓ Train+Test 85.40±0.57 84.37±0.58 81.82±0.59 84.82±0.52 66.22±0.75 71.09±1.01 76.44±0.89

RA-
combined

✗ 92.42±0.21 80.90±0.64 82.23±0.74 82.71±0.69 36.98±1.27 48.07±1.66 49.51±1.47
✓ Test 82.55±0.86 76.33±0.95 77.93±0.68 78.42±0.64 45.44±1.32 60.23 ±1.24 62.18±1.33
✓ Train+Test 86.69±0.12 84.06±0.21 85.27±0.23 86.06±0.20 61.75±0.76 75.29±0.42 77.25±0.27

Adv. ✗ 69.32±1.61 61.73±1.12 68.54±0.68 68.00±0.31 36.95±0.97 50.21±0.55 49.73±0.98
Mixed ✗ 91.15±0.15 54.55±0.40 68.37±0.66 68.48±0.37 3.86±0.13 17.15±1.25 16.85±0.93
Adv.-KL ✗ 72.28±2.05 62.60±1.72 70.29±1.42 69.84±1.29 32.60±0.74 51.05±2.47 51.11±1.03
Adv.-ALP ✗ 71.25±0.97 62.36±2.19 70.30±1.50 69.71±1.22 33.98±1.44 52.29±1.76 52.57±1.57
STN ✗ 83.74±0.50 81.94±0.51 78.86±0.73 82.21±0.55 51.23±1.01 54.03±1.36 59.65±1.31
ETN ✗ 84.39±0.09 82.98±0.28 80.30±0.55 83.31±0.31 59.40±0.76 64.08±0.78 68.75±0.83
Augerino ✗ 83.68±0.76 80.17±0.70 82.27±0.69 81.69±0.72 52.44±0.66 60.36±1.00 60.63±0.94
TIpool ✗ 93.56±0.25 55.96±0.39 66.46±1.36 70.70±0.77 3.14±1.09 20.22±1.51 27.88±1.09
TIpool-RA ✗ 91.40±0.17 87.50±0.24 84.65±0.51 87.31±0.29 66.52±1.31 67.28±1.03 72.35±0.83
TIpool ✓Train+Test 91.94±0.38 78.66±0.83 88.77±0.51 90.76±0.40 42.01±1.07 76.26±1.12 81.46±1.02
TIpool-RA ✓Train+Test 90.47±0.36 89.37±0.36 87.92±0.36 89.91±0.34 74.51±0.79 80.07±0.69 83.76±0.60
TIpool-RA

✓Train+Test 91.09±0.40 89.02±0.30 90.13±0.34 90.64±0.30 70.18±1.12 82.71±0.62 84.26±0.41
combined

Table 2: Effect of augmentation on robustness to rotations with different interpolations.
Shown are clean accuracy on standard CIFAR10 test set, average and worst-case
accuracies on rotated test set with mean and standard deviations over 5 runs.

of images rotated in multiples of 90 degrees. v) Spatial transformer networks
(STN): which learns to undo the transformation by training using appropriate
data augmentation [47]. vi) Equivariant transformer networks (ETN): which
additionally uses appropriate coordinate transformation along with a learned
spatial transformer to undo the transformation [48]. We also compare with the
simple baseline of augmenting with random rotations, referred to as RA in Tab. 1.
Additionally, we also compare with [19], an approach which learns distribution
of augmentations on the task of rotated CIFAR10 classification, referred to as
Augerino in Tab. 2. We use 4 samples from the learned distribution of aug-
mentations during both training and test. We would also like to point out that
adversarial training using the worst of 10 samples roughly increases the training
effort of the underlying model by a factor of 5.

Results We measure the accuracy on the original testset(Clean), as well as
the average (Avg.) and worst-case (Worst) accuracies in the orbit of rotations
discretized in steps of 1 degree, where ‘Worst ’ counts an image as misclassified as
soon as there exists a rotation at which the network makes a wrong prediction.

As we can see in Tab. 1, networks trained without rotation augmentation
perform poorly in terms of both, the average and worst-case accuracy if the data
set contains an inherent orientation. While augmenting with rotations during
training results in improvements, there is still a huge gap (∼ 30% for CIFAR10
and CUB200) between the average and worst-case accuracies. While adversarial
training approaches [10,12] improve the performance in the worst case, there
is a clear drop in the clean and average accuracies when compared to data
augmentation. Learned approaches to correct orientation i.e. STN [47], ETN [48]
show an improvement over adversarial training schemes in terms of average and



10 Gandikota et al.

worst case accuracies, when training from scratch, with ETN demonstrating
even higher robustness than plain STNs. While pooling over features of rotated
versions of image provides provable invariance to discrete rotations, this approach
is still susceptible to continuous image rotations. The robustness of this approach
to continuous rotations is boosted by rotation augmentation, with improvements
over even learned transformers. Note that using TI-pooling with 4 rotated copies
increases the computation by 4 times. In contrast, our orbit mapping effortlessly
leads to significant improvements in robustness even without augmenting with
rotations, with performance better than adversarial training, learned transformers
and discrete invariance based approaches. Since our orbit mapping for discrete
images has some instabilities, our approach also benefits from augmentation with
image rotations. Further, when combined with discrete invariant approach [36],
we obtain the best accuracies for average and worst case rotations.

Even when finetuning networks, we observe that orbit mapping readily im-
proves robustness to rotations over standard training, even without the use of
augmentations. Furthermore, combination of orbit mapping with the discrete
invariant approach of pooling over rotated features yields the best performance.
For the birds dataset with inherent orientation, undoing rotations using ETN
significantly improves robustness when compared to adversarial training schemes,
which only marginally improve robustness over rotation augmentation. We found
it difficult to train STN with higher accuracies (Clean/Avg./Worst) than plain
augmentation with rotated images for CUB200 and HAM10000, despite extensive
hyperparameter optimization, therefore we do not report the numbers here3.
When the data itself does not contain a prominent orientation as in the HAM10000
data set, the general trend in accuracies still holds (Clean>Avg.>Worst), but
the drops in accuracies are not drastic, and adversarial training schemes provide
improvements over undoing transormations using ETN. Further, orbit mapping
and pooling over rotated images provide comparable improvements in robustness,
with their combination achieving the best results.
Discretization Artifacts: It is interesting to see that while consistently se-
lecting a single element from the continuous orbit of rotations leads to provable
rotational invariance when considering images as continuous functions, discretiza-
tion artifacts and boundary effects still play a crucial role in practice, and
rotations cannot be fully stabilized. As a result, there is still discrepancy between
the average and worst case accuracies, and the performance is further improved
when our approach also uses rotation augmentation. Motivated by the strong
effect the discretization seems to have, we investigate different interpolation
schemes used to rotate the image in more detail: Tab. 2 shows the results different
training schemes with and without our orbit mapping (OM ) obtained with a
ResNet-18 architecture on CIFAR-10 when using different types of interpolation.
Besides standard training (Std.), we use rotation augmentation (RA) using the
Pytorch-default of nearest-neighbor interpolation, a combined augmentation
scheme (RA-combined) that applies random rotation only to a fraction of images

3
We use a single spatial transformer as opposed to multiple STNs used in [47] and train on randomly
rotated images.



A Simple Strategy to Provable Invariance 11

Train. OM
D4/C4 D16/C16

Clean Avg. Worst Clean Avg. Worst

Std. ✗ 98.73±0.04 98.61±0.04 96.84±0.08 99.16±0.03 99.02±0.04 98.19±0.08
Std. ✓(Train+Test) 98.86±0.02 98.74±0.03 98.31±0.05 99.21±0.01 99.11±0.03 98.82±0.06

RA. ✗ 99.19±0.02 99.11±0.01 98.39±0.05 99.31±0.02 99.27±0.02 98.89±0.03
RA. ✓(Train+Test) 98.99±0.03 98.90±0.01 98.60±0.02 99.28±0.02 99.23±0.01 99.04±0.02

Table 3: Effect of orbit mapping and rotation augmentation on RotMNIST classification
using regular D4/C4 and D16/C16 E2CNN models. Shown are clean accuracy on
standard test set and average and worst-case accuracies on test set rotated in steps of 1
degree, with mean and standard deviations over 5 runs.

in a batch using at least one nearest neighbor, one bilinear and one bicubic
interpolation. The adversarial training and regularization from [10,12] are trained
using bilinear interpolation (following the authors’ implementation).

Results show that interpolation used in image rotation impacts accuracies
in all the baselines. Most notably, the worst-case accuracies between different
types of interpolation may differ by more than 20%, indicating a huge influence
of the interpolation scheme. Adversarial training with bi-linear interpolation still
leaves a large vulnerability to image rotations with nearest neighbor interpolation.
Further, applying an orbit mapping at test time to a network trained with rotated
images readily improves its worst case accuracy, however, there is a clear drop in
clean and average case accuracies, possibly due to the network not having seen
doubly interpolated images during training. While our approach without rotation
augmentation is also vulnerable to interpolation effects, it is ameliorated when
using orbit mapping along with rotation augmentation. We observe that including
different augmentations (RA-combined) improves the robustness significantly.
Combining the orbit mapping with the discrete invariant approach [36] boosts
the robustness, with different augmentations further reducing the gap between
clean, average case and worst case performance.
Experiments with RotMNIST We investigate the effect of orbit mapping on
RotMNIST classificationwith the state of the art network from [30] employing
regular steerable equivariant models[81]. This model uses 16 rotations and flips of
the learned filters (with flips being restricted till layer3). We also compare with a
variation of the same architecture with 4 rotations. We refer to these models as
D16/C16 and D4/C4 respectively. We train and evaluate these models using their
publicly available code4. Results in Tab. 3 indicate that even for these state of the
art models, there is a discrepancy between the accuracy on the standard test set
and the worst case accuracies, and their robustness can be further improved by
orbit mapping. Notably, orbit mapping significantly improves worst case accuracy
(by around 1.5%) for D4/C4 steerable model trained without augmenting using
rotations, showing gains in robustness even over naively trained D16/C16 model
of much higher complexity. Training with augmentation leads to improvement in
robustness, with orbit mapping providing gains further in robustness. However,
artifacts due to double interpolation affect performance of orbit mapping.

4 code url https://github.com/QUVA-Lab/e2cnn_experiments

https://github.com/QUVA-Lab/e2cnn_experiments


12 Gandikota et al.

Augment. Unscaling
with STN without STN

Clean Avg. Worst Clean Avg. Worst

[0.8, 1.25] ✗ 86.15± 0.52 24.40±1.56 0.01±0.02 85.31±0.39 33.57±2.00 2.37±0.06
[0.8, 1.25] ✓(Train+Test) 86.15± 0.28 86.15± 0.28 86.15± 0.28 85.25±0.43 85.25±0.43 85.25±0.43
[0.8, 1.25] ✓(Test) 86.15± 0.52 85.59±0.79 85.59±0.79 85.31±0.39 83.76±0.35 83.76±0.35

[0.1, 10] ✗ 85.40±0.46 47.25±1.36 0.04±0.05 75.34±0.84 47.58±1.69 1.06±0.87
[0.1, 10] ✓(Test) 85.40±0.46 85.85±0.73 85.85±0.73 75.34±0.84 81.45±0.56 81.45±0.56

[0.001, 1000] ✗ 33.33± 7.58 42.38± 1.54 2.25±0.22 5.07±2.37 25.42±0.73 2.24±0.11
[0.001, 1000] ✓(Train+Test) 85.66± 0.39 85.66± 0.39 85.66± 0.39 85.05±0.43 85.05±0.43 85.05±0.43

Table 4: Scaling invariance in 3D pointcloud classification with PointNet trained on
modelnet40, with and without data augmentation, with and without STNs or scale
normalization. Mean and standard deviations over 10 runs are reported.

RA STN PCA Clean
Rotation Translation

Avg. Worst Avg. Worst

✗ ✓ ✗ 86.15±0.52 10.37±0.18 0.09±0.07 10.96±1.22 0.00±0.00
✗ ✗ ✗ 85.31±0.39 10.59±0.25 0.26±0.10 6.53±0.12 0.00±0.00
✗ ✓ ✓(Train+Test) 74.12± 1.80 74.12± 1.80 74.12± 1.80 74.12± 1.80 74.12± 1.80
✗ ✗ ✓(Train+Test) 75.36±0.70 75.36±0.70 75.36±0.70 75.36±0.70 75.36±0.70

✓ ✓ ✗ 72.13± 5.84 72.39± 5.60 35.91± 4.87 5.35±0.98 0.00±0.00
✓ ✗ ✗ 63.93±0.65 64.75±0.57 45.53±0.29 3.90±0.71 0.00±0.00
✓ ✓ ✓(Test) 72.13± 5.84 72.96± 5.85 72.96± 5.85 72.96± 5.85 72.96± 5.85
✓ ✗ ✓(Test) 64.56±0.91 64.56±0.91 64.56±0.91 64.56±0.91 64.56±0.91
✓ ✓ ✓(Train+Test) 72.84±0.77 72.84±0.77 72.84±0.77 72.84±0.77 72.84±0.77
✓ ✗ ✓(Train+Test) 74.84±0.86 74.84±0.86 74.84±0.86 74.84±0.86 74.84±0.86

Table 5: Rotation and translation invariances in 3D pointcloud classification with
PointNet trained on modelnet40, with and without rotation augmentation, with and
without STNs or PCA. Mean and standard deviations over 10 runs are reported.

4.2 Invariances in 3D Point Cloud Classification

Invariance to orientation and scale is often desired in networks classifying objects
given as 3D point clouds. Popular architectures, such as PointNet [60] and its
extensions [61], rely on the ability of spatial transformer networks to learn such
invariances by training on large datasets and extensive data augmentations. We
analyze the robustness of these networks to transformations with experiments
using Pointnet on modelnet40 dataset [55]. We compare the class accuracy of the
final iterate for the clean validation set (Clean), and transformed validation sets
in the average (Avg.) and worst-case (Worst). We show that PointNet performs
better with our orbit mappings than with augmentation alone.

In this setting, X = Rd×N are N many d-dimensional coordinates (usually
with d = 3). The desired group actions for invariance are left-multiplication
with a rotation matrix, and multiplication with any number c ∈ R+ to account
for different scaling. We also consider translation by adding a fixed coordinate
ct ∈ R3 to each entry in X . Desired invariances in point cloud classification
range from class-dependent variances to geometric properties. For example, the
classification of airplanes should be invariant to the specific wing shape, as well as
the scale or translation of the model. While networks can learn some invariance
from training data, our experiments show that even simple transformations like
scaling and translation are not learned robustly outside the scope of what was
provided in the training data, see Tabs. 4, 5, 6. This is surprising, considering
that both can be undone by centering around the origin and re-scaling.



A Simple Strategy to Provable Invariance 13

Augmentation STN OM Clean Scaling Rotation Translation
Scale RA Translation All Avg. Worst Avg. Worst Avg. Worst

[0.8, 1.25] ✓ [−0.1, 0.1] ✓ ✗ 72.13± 5.84 19.74± 4.01 0.16± 0.42 72.39± 5.60 35.91± 4.87 5.35±0.98 0.00±0.00
[0.8, 1.25] ✓ [−0.1, 0.1] ✓ ✓ Test 67.38± 7.96 64.88± 12.16 64.88± 12.16 64.88± 12.16 64.88± 12.16 64.88± 12.16 64.88± 12.16
[0.8, 1.25] ✓ [−0.1, 0.1] ✓ ✓ Train+Test 77.52±1.03 77.52±1.03 77.52±1.03 77.52±1.03 77.52±1.03 77.52±1.03 77.52±1.03
[0.8, 1.25] ✓ [−0.1, 0.1] ✗ ✗ 63.93±0.65 12.85±0.29 0.27±0.55 64.75±0.57 45.53±0.29 3.90±0.71 0.00±0.00
[0.8, 1.25] ✓ [−0.1, 0.1] ✗ ✓Test 64.71±0.92 57.10±1.14 57.10±1.14 57.10±1.14 57.10±1.14 57.10±1.14 57.10±1.14
[0.8, 1.25] ✓ [−0.1, 0.1] ✗ ✓Train+Test 74.41±0.58 74.41±0.58 74.41±0.58 74.41±0.58 74.41±0.58 74.41±0.58 74.41±0.58

Table 6: Combined Scale, rotation and translation invariances in 3D pointcloud classifi-
cation with PointNet trained on modelnet40, with data augmentation and analytical
inclusion of each invariance. Mean and standard deviations over 10 runs are reported.

Scaling Invariance to scaling can be achieved in the sense of Sec. 3 by scaling
input point-clouds by the average distance of all points to the origin. Our
experiments show that this leads to robustness against much more extreme
transformation values without the need for expensive training, both for average
as well as worst-case accuracy. We tested the worst-case accuracy on the following
scales: {0.001, 0.01, 0.1, 0.5, 1.0, 5.0, 10, 100, 1000}. While our approach performs
well on all cases, training PointNet on random data augmentation in the range of
possible values actually reduces the accuracy on clean, not scaled test data. This
indicates that the added complexity of the task cannot be well represented within
the network although it includes spatial transformers. Even when restricting the
training to a subset of the interval of scales, the spatial transformers cannot fully
learn to undo the scaling, resulting in a significant drop in average and worst-case
robustness, see Tab. 4. While training the original Pointnet including the desired
invariance in the network achieves the best performance, dropping the spatial
transformers from the architecture results in only a tiny drop in accuracy with
significant gains in training and computation time5. This either indicates that
in the absence of rigid deformation the spatial transformers do not add much
knowledge and is strictly inferior to modeling invariance, at least on this dataset.

Rotation and Translation In this section, we show that 3D rotations and
translations exhibit a similar behavior and can be more robustly treated via
orbit mapping than through data augmentation. This is even more meaningful
than scaling as both have three degrees of freedom and sampling their respective
spaces requires a lot more examples. For rotations, we choose the unique element
of the orbit to be the rotation of X that aligns its principle components with the
coordinate axes. The optimal transformation involves subtracting the center of
mass from all coordinates and then applying the singular value decomposition
X = UΣV of the point cloud X up to the arbitrary orientation of the principle
axes, a process also known as PCA. Rotation and translation can be treated
together, as undoing the translation is a substep of PCA.To remove the sign
ambiguity in the principle axes, we choose signs of the first row of U and
encode them into a diagonal matrix D, such that the final transform is given by
X̂ = XV ⊤D. We apply this rotational alignment to PointNet with and without
spatial transformers and evaluate its robustness to rotations in average-case and
worst-case when rotating the validation dataset in 16×16 increments (i.e. with 16

5
Model size of PointNet with STNs is 41.8 MB, and without STNs 9.8 MB



14 Gandikota et al.

discrete angles along each of the two angular degrees of freedom of a 3D rotation).
We test robustness to translations in average-case and worst-case for the following
shifts in each of x, y and z directions: {−10.0,−1.0,−0.5,−0.1, 0.1, 0.5, 1.0, 10.0}.
Tab. 5 shows that PointNet trained without augmentation is susceptible in
worst-case and average-case rotations and even translations. The vulnerability
to rotations can be ameliorated in the average-case by training with random
rotations, but the worst-case accuracy is still significantly lower, even when spatial
transformers are employed. Also notable is the high variance in performance of
Pointnets with STNs trained using augmentations. On the other hand, explicitly
training and testing with stabilized rotations using PCA does provide effortless
invariance to rotations and translations, even without augmentation. Interestingly,
the best accuracy here is reached when training PointNet entirely without spatial
transformers, which offer no additional benefits when the rotations are stabilized.
The process for invariance against translation is well-known and well-used due to
its simplicity and robustness. We show that this approach arises naturally from
our framework, and that its extension to rotational invariance inherits the same
numerical behavior, i.e., provable invariance outperforms learning to undo the
transformation via data augmentation.

Combined invariance to Scaling, Rotation, Translation. Our approach
can be extended to make a model simultaneously invariant to scaling, rotations
and translations. In this setup, we apply a PCA alignment before normalizing
the scale of input point cloud. Tab. 6 shows that PointNet trained with such
combined orbit mapping does achieve the desired invariances.

5 Discussion and Conclusions

We proposed a simple and general way of incorporating invariances to group
actions in neural networks by uniquely selecting a specific element from the
orbit of group transformations. This guarantees provable invariance to group
transformations for 3D point clouds, and demonstrates significant improvements
in robustness to continuous rotations of images with a limited computational over-
head. However, for images, a large discrepancy between the theoretical provable
invariance (in the perspective of images as continuous functions) and the practi-
cal discrete setting remains. We conjecture that this is related to discretization
artifacts when applying rotations that change the gradient directions, especially
at low resolutions. Notably, such artifacts appear more frequently in artificial
settings, e.g. during data augmentation or when testing for worst-case accuracy,
than in photographs of rotating objects that only get discretized once. While
we found a consistent advantage of enforcing the desired invariance via orbit
mapping rather than training alone, combination of data augmentation and orbit
mappings yields additional advantages (in cases where discretization artifacts
prevent a provable invariance of the latter). Moreover, our orbit mapping can be
combined with existing invariant approaches for improved robustness.



A Simple Strategy to Provable Invariance 15

A Extension of Orbit Mapping to Equivariant Networks

The equivariance of G preserves the structure of transformations g ∈ S of input
data in the elements y ∈ Y (including, but not limited to, the case where X ≡ Y).
The equivariance of G to S is defined as

G(g(x); θ) = g(G(x; θ)) ∀x ∈ X , g ∈ S, θ ∈ Rp. (8)

We now show that equivariant networks can be designed by applying all transfor-
mations in S to the input x.

Proposition 1. Let S define a group action on X . A network G is equivariant
under the group action of S if it can be written as

G(x; θ) = G1({g(G2(g
−1(x); θ2)) | g ∈ S}; θ1) (9)

for some other arbitrary network G2 : X × Rp2 → X , and a network G1 :
2X × Rp1 → X that commutes with any element h ∈ S, i.e., for h ∈ S, and
Z ⊂ X , it satisfies G1(h(Z); θ2) = h(G1(Z; θ2)), where h(Z) denotes the set
obtained by the applying h to every element of Z.

Proof. We want to show that a network satisfying the condition (5) is equivariant.
Let h ∈ S be arbitrary. Note that

{g | g ∈ S} = {h−1g | g ∈ S} (10)

such that a substitution of variables from g ∈ S to z = h−1g ∈ S (i.e., g = hz
and z−1 = g−1h) yields

{g(G2(g
−1(h(x)); θ2)) | g ∈ S}

={h(z(G2(z
−1(x); θ2))) | z ∈ S}.

This means that we can also write

G(h(x); θ) = G1({h(z(G2(z
−1(x); θ2))) | z ∈ S}; θ1)

= G1(h({z(G2(z
−1(x); θ2)) | z ∈ S}); θ1)

= h(G1({z(G2(z
−1(x); θ2)) | z ∈ S}); θ1)

= h(G(x; θ))

which yields the desired equivariance under the assumed commutative property.

The work [28] can be interpreted as an instance of the construction in Proposi-
tion 1, where equivariant linear layers w.r.t. rotations by 90 degrees are obtained
by choosing G2 to be a simple convolution and G1 to be the summation over all
(finitely many) elements of the set. Subsequently, they nest these layers with
component-wise (and therefore inherently equivariant) non-linearities.

While Proposition 1 is stated for general groups, realizations of such construc-
tions often rely on the ability to list an entire orbit of the group. In the following
we show an efficient solution to obtain equivariant networks using orbit mapping.



16 Gandikota et al.

Proposition 2 (Orbit mapping for equivariant networks). Let h be an
orbit mapping that satisfies h(S ·x) ∈ S ·x for all x. Any network G : X ×Rp → X
that can be written as

G(x; θ) = ĝ−1(G2(ĝ(x); θ)) (11)

for an arbitrary network G2 : X × Rp → X and ĝ ∈ S denoting the element that
satisfies ĝ(x) = h(S · x) is equivariant.

Proof. We want to show that a network satisfying the condition (11) is equivariant.
Consider an input a = r(x) to the network, where r denotes an arbitrary element
of S. We first need to determine the element g̃ ∈ S such that g̃(a) = h(S · a).
From the definition of the orbit, it follows that S · x = S · r(x), such that our
orbit mapping satisfies remains the same, i.e., h(S · x) = h(S · a) = ĝ(x). Solving
the equation g̃(a) = ĝ(x) with a = r(x), i.e., x = r−1(a) for g̃ yields g̃ = ĝr−1.
Now it follows that

G(r(x); θ) = G(a; θ) = g̃−1(G2(g̃(a); θ))

= r(ĝ−1(G2(g̃(a); θ)))

= r(ĝ−1(G2(ĝ(x); θ)))

= r(G(x; θ)),

which concludes the proof.

B A Discussion on Isometry Invariance

Here, we will elaborate on how the functional map framework [29] can be seen as
an application of our orbit mapping for isometry invariance. Functional maps
are a widely used method to find correspondences between isometric shapes, and
we will show here that the framework fits within our proposed theory. Non-rigid
correspondence is a notoriously hard problem, and joint optimization within
a larger framework makes it even more complex. To resolve this the idea of
functional maps is to change the representation of the correspondence from point-
wise to function-wise. By choosing the eigenfunctions of the Laplace-Beltrami
operator [31] as the basis for functions on the shapes, the problem becomes a least
squares problem aligning suitable descriptor functions in the space of functions.

Here, F ∈ F(X ) and G ∈ F(Y) are descriptor functions on the shapes X
and Y respectively. They are assumed to take similar values on corresponding
points on X ,Y , and generate the designated orbit element within our framework.
These descriptors are projected onto the eigenfunctions of X ,Y, named Φ, Ψ
respectively. These projections are the chosen elements of the orbit we will align,
and, for isometries and sufficiently comparable descriptors, the projections can
be aligned by an orthogonal transformation generating the group action which is
exactly the functional map C. The vanilla functional map optimization looks like
this:



A Simple Strategy to Provable Invariance 17

argmin
C∈O(k)

∥CΦ−1F − Ψ−1G∥22 (12)

Functional maps are often used when shape correspondence is required within
another framework, and has been used in many deep learning applications
[7],[16],[22]. Due to its wide application, we will not provide extra experiments
to show its efficacy but want to emphasize that this is a possible implementation
of our theory.

C Stability of gradient based orbit mapping

In this section we analyze the stability of the proposed gradient based orbit
mapping strategy for discrete images. While the proposed gradient based orbit
mapping our approach leads to unique orientation as long as

∫
Z
∇u(z) dz is

non-zero, practically, the magnitude of
∫
Z
∇u(z) dz and interpolation artifacts

affect the stability of the orbit mapping. While one could possibly use forward or
central differences to calculate gradients at pixels along approximate circles, this
further deteriorates the stability of orbit mapping. This is seen in Tab. 7 a) which
shows the mean standard deviation orientation of orbit-mapped images when
input images rotated in steps of 1 degree using bilinear interpolation. We find that
using forward differences to approximate the gradient has the most instability.
In the following section, we derive a necessary condition for provable invariance
using general convolution kernels (instead of gradients in x and y direction),
where we show that forward differences does not satisfy these conditions for any
rotation.

Tab. 7 b) shows the histogram of standard deviations in orientation for
CIFAR10 images when calculating exact gradients along the circle. The standard
deviations of predicted orientations of over 78% of the images is less than 10
degrees, and over 44% of images is less than 4 degrees, indicating a relatively
stable orbit mapping for these images. However, a fraction of images also have
a higher variance, in predicted orientation possibly due to small values of the
integral. Tab. 7 c) shows that our gradient based orbit mapping is fairly robust
to small additive Gaussian noise.

D Invariance to image rotations using convolution kernels

Following the notation from the paper, let u(z) denote the continuous image
function with z ∈ R2 representing the spatial coordinates of an image. The
invariance set for the orbit of continuous image rotations is

S = {g : X → X | g(u)(z) = (u ◦ r(α))(z), for α ∈ R},

and r(α) =

(
cos(α) − sin(α)
sin(α) cos(α)

)
is the rotation matrix.



18 Gandikota et al.

a)
Dataset Exact Central Diff. Forward Diff

CIFAR10 10.46 12.47 23.89
CUB200 9.05 14.56 24.75

c)
Dataset clean σ2=0.01 σ2=0.05 σ2=0.1

CIFAR10 10.46 11.36 14.08 16.69
CUB200 9.05 10.55 15.99 20.610

b)

Table 7: Stability and robustness of proposed gradient based Orbit Mapping strategy.
a) The mean standard deviation values of angles in degrees over the images in dataset
are reported when rotating images based on exact gradients computed along circle
using bilinear interpolation, and approximate gradients using finite differences along
pixels closest to the circle. b) The histogram of standard deviations of the predicted
orientation in degrees for CIFAR10. c) The mean standard deviation values of angles in
degrees over the images in CIFAR10 dataset are reported, for different levels of additive
Gaussian noise.

Let us consider two kernels ki : R2 → R, i = {1, 2}. We now investigate the
convolution of a kernel with a rotated image (u ◦ r(α))(z)

(ki ∗ u ◦ r(α)) (z) =
∫
R2

ki(x)(u ◦ r(α))(z − x)dx

=

∫
R2

ki(x)u(r(α)z − r(α)x)dx

=

∫
R2

ki(r
Tφ)u(r(α)z − φ)dφ

with φ = r(α)x

Now assume (
k1(r

T (α)φ)
k2(r

T (α)φ)

)
= rT (α)

(
k1(φ)
k2(φ)

)
. (13)

Then (
(k1 ∗ (u ◦ r(α))) (z)
(k2 ∗ (u ◦ r(α))) (z)

)
=

∫
R2

rT (α)

(
k1(φ)
k2(φ)

)
u(r(α)z − φ)dφ.

= rT (α)

(
(k1 ∗ u)(r(α)z)
(k2 ∗ u)(r(α)z)

)
Then for a suitable set Z which makes the integral rotationally invariant, (e.g.
circles around image center)∫

Z

(
(k1 ∗ (u ◦ r(α))) (z)
(k2 ∗ (u ◦ r(α))) (z)

)
dz = rT (α)

∫
Z

(
(k1 ∗ u)(φ)
(k2 ∗ u)(φ)

)
dφ (14)



A Simple Strategy to Provable Invariance 19

And we can determine the optimal rotation as solution to

ĝ = argmaxg∈S

〈(
1
0

)
,

∫
Z

(
k1 ∗ u
k2 ∗ u

)
(z) dz

〉
(15)

whose solution is given by α̂ such that

(
cos α̂
sin α̂

)
=

∫
Z

(
k1 ∗ u
k2 ∗ u

)
(z) dz∥∥∥∥∫Z (

k1 ∗ u
k2 ∗ u

)
(z) dz

∥∥∥∥ (16)

We can see that (13) is a necessary condition to ensure invariance to image
rotations using orbit mapping with (16) employing convolution kernels k1 and
k2. For discrete convolution kernels, eq. (13) is not exactly satisfied for arbitrary
rotations due to discretization problem. We can deduce necessary conditions on
discrete kernels k1 and k2 to satisfy eq. (13) for rotations in multiples of 90o. For
square kernels k1 and k2 of size N ×N , we find that

k1[i, j] = k1[N − i+ 1, N − j + 1] and (17)

k2 = k1 ◦ r(−90o) (18)

are necessary to satisfy the condition (13) for α = 90o.
For N = 2, this gives kernels of the form

k1 =

(
a b
−b −a

)
and k2 =

(
−b a
−a b

)
For N = 3,

k1 =

 a b c
d 0 −d
−c −b −a

 and k2 =

−c d a
−b 0 b
−a −d c


Note that computing gradients using central differences satisfies (17) and (18),
whereas using forward differences does not satisfy these conditions. Therefore,
we observe more instabilities in orbit mapping when forward differences are used
for gradient computation, see Tab. 7.

E Details about the Experimental Setting

In the following we provide the detailed training settings used in our experiments.

E.1 Rotation invariance for images

For our experiments with image rotational invariance, we used Pytorch(v.1.8.1),
python(v.3.8.8), torchvision(v.0.9.1). The exact training protocol is provided



20 Gandikota et al.

below.
CIFAR10 We trained a Resnet18 [77] on the CIFAR 10 dataset, using stochastic
gradient descent with initial learning rate 0.1, momentum 0.9, and weight decay
5e-4. Additionally, we trained a small Convnet and a linear model which used
an initial learning rate of 0.01. For all the models, the learning rate is decayed
by a factor of 0.5 whenever the validation loss does not decrease for 5 epochs.
Training data is augmented using random horizontal flips, random crops of size
32 after zero-padding by 4 pixels. We divide the training data into train (80%)
and validation (20%) sets. Networks are trained for 150 epochs with a batch
size of 128 and we report the results on the test set using the model with best
validation accuracy. The experiments with CIFAR10 were performed partially
on a machine with one Nvidia TITAN RTX, and partially on machine with 4
NVIDIA GeForce RTX 2080 GPUs.
HAM10000We fine-tuned an imagenet pretrained6 NFNet-F0 [79] on HAM10000
dataset [78]. The dataset is split into 8912 train and 1103 validation images using
stratified split, ensuring there are no duplicates with the same lesion ids in the
train and validation sets. Training data is augmented using random horizon-
tal and vertical flips and color jitter, and randomly oversample the minority
classes to mitigate class imbalance. The network is finetuned for 5 epochs, with
a batch size of 128 and learning rate of 1e-4, weight decay of 5e-4 using Adam
optimizer [82] with exponential learning rate decay, with factor 0.2. For training
using TI-pool which uses 4 rotated copies of images, we reduce the batch size
to 32 to fit the GPU memory. For experiments with STN we use a 3 layered
CNN with convolution filers of size 3 × 3 followed by 2 fully connected layers
for pose prediction. For experiment with ETN we use a CNN with 4 conv layers
with 64 channels and 2 fully connected layers for pose prediction. We report
results using final iterate on the validation set. The experiments with HAM10000
dataset were partially performed on a machine with one NVIDIA TITAN RTX
card, and partially on machine with 4 NVIDIA GeForce RTX 2080 GPUs.
CUB200 This is a small dataset containing 11,788 images of birds, split into
5994 images for training and 5794 test images. Since training a network from
scratch gives low accuracies (around 35% clean accuracy with Resnet-50), we
instead perform finetuning using an imagenet pretrained Resnet-50 from pytorch
torchvision (v.0.9.1) on CUB-200 dataset [80]. The training data is augmented
using random horizontal flips, random resized crops of size 224. The network
is finetuned for 60 epochs with batch size of 128 and initial learning rate of
1e-4, using Adam optimizer [82] , weight decay of 5e-4, with exponential learning
rate decay, with factor 0.9. . For training using TI-pool which uses4 rotated
copies of images, we reduce the batch size to 64 to fit in the GPU memory. For
experiment with ETN we use a CNN with 4 conv layers with 64 channels and
2 fully connected layers for pose prediction. We report the accuracies using the
final iterate on the test set. The experiments on CUB-200 dataset were performed
on machine with 4 NVIDIA GeForce RTX 2080 GPUs.

6 pretrained model from https://github.com/rwightman/pytorch-image-models li-
censed Apache 2.0

https://github.com/rwightman/pytorch-image-models


A Simple Strategy to Provable Invariance 21

All the three image datasets including HAM10000 dataset [78] used in our
experiments are publicly available and widely used in machine learning literature.
To the best of our knowledge these do not contain offensive content or personally
identifiable information.

E.2 Rotation and Scale invariance for 3D point clouds

We investigate invariance to rotations and scale for 3D point clouds with the task
of point cloud classification on the modelnet40 dataset [83]. For this dataset note
the asset descriptions at https://modelnet.cs.princeton.edu/: ”All CAD
models are downloaded from the Internet and the original authors hold the
copyright of the CAD models. The label of the data was obtained by us via
Amazon Mechanical Turk service and it is provided freely. This dataset is provided
for the convenience of academic research only.” We use the resampled version of
shapenet.cs.stanford.edu/media/modelnet40_normal_resampled.zip. We
follow the hyperparameters of [60,61] with improvements from the implementation
of [84] on which we base our experiments. We train a standard PointNet for 200
epochs with a batch size of 24 with Adam [82] with base learning rate of 0.001,
weight decay of 0.0001. During training we sample 1024 3D points from every
example in modelnet40, randomly scale with a scale from the interval [0.8, 1.25],
and randomly translate by an offset of up to 0.1 - if not otherwise mentioned in
our experiments. This is the training procedure proposed in [84]. However, we
always train the model for the the full 200 epochs and report final class accuracy
based on the final result - we do not report instance accuracy. We further report
invariance tests based on the final model.

As described in the main body, we evaluate rotational invariance by testing on
16×16 regularly spaced angles from [0, 2π], rotating along xy and yz axes. We eval-
uate scaling invariance by testing the scales {0.001, 0.01, 0.1, 0.5, 1.0, 5.0, 10, 100, 1000}.
All experiments for this dataset were run on three single GPU office machines,
containing an NVIDIA TITAN Xp, and two GTX 2080ti, respectively.

F Additional Numerical Results

F.1 Invariance to continous image rotations

Discretization effects in CUB200 We further investigate the effect of dis-
cretization using different interpolation schemes for rotation on higher resolution
on the CUB-200 dataset (trained at 224x224 resolution) fine-tuned using Resnet-
50. Tab. 8 shows the results of different training schemes with and without
our orbit mapping (OM ) obtained when using different interpolation schemes
for rotation. Besides standard training (Std.), we use rotation augmentation
(RA), and the adversarial training and regularization from [10,12]. Even for this
higher resolution dataset, the worst-case accuracies between different types of
interpolation may differ by more than 15%.

In particular, adversarial training with bi-linear interpolation is still more
vulnerable to image rotations with nearest neighbor interpolation. Even the

https://modelnet.cs.princeton.edu/
shapenet.cs.stanford.edu/media/modelnet40_normal_resampled.zip


22 Gandikota et al.

Train OM Clean. Average Worst-case
Nearest Bilinear Bicubic Nearest Bilinear Bicubic

Std.
✗ 77.41±0.33 37.67±0.35 52.45±0.29 51.87±0.31 3.19±0.49 8.07±0.35 8.16±0.33
✓Train+Test 71.19±0.34 63.35±0.30 71.56±0.34 70.93±0.35 40.63±0.48 58.80±0.39 59.02±0.41

RA.
✗ 69.89±0.28 67.61±0.33 70.12±0.34 68.83±0.37 34.88±0.47 41.01±0.41 40.50±0.43
✓Test 69.41±0.31 69.19±0.32 69.27±0.29 68.53±0.38 48.63±0.43 56.28±0.39 55.86±0.40
✓Train+Test 70.35±0.46 69.41±0.23 70.72±0.18 70.37±0.34 47.92±0.26 57.54±0.39 57.62±0.14

Advers. ✗ 64.54±0.17 53.74±0.65 64.07±0.25 63.22±0.54 26.63±0.79 42.82±0.60 42.44±0.55
Mixed ✗ 68.56±0.46 57.17±0.60 65.91±0.42 65.76±0.51 28.06±0.58 42.87±0.32 42.92±0.38
Advers.-KL ✗ 64.47±0.35 53.93±0.35 64.65±0.26 64.02±0.34 26.94±0.46 43.04±0.63 42.61±0.37
Advers.-ALP ✗ 64.63±0.31 55.56±0.67 64.34±0.17 63.21±0.24 29.55±0.69 43.63±0.21 43.48±0.32
ETN ✗ 64.14±0.24 64.26±0.65 66.95±0.42 64.32±0.62 43.33±1.01 52.85±1.12 49.72±1.31
TIpool ✗ 76.80±0.25 60.67±0.79 74.90±0.15 74.82±0.24 36.06±1.12 59.04±0.37 59.50±0.41
TIpool-RA ✗ 73.47±0.48 72.30±0.51 74.71±0.29 73.65±0.36 57.22±0.64 62.82±0.56 62.31±0.42
TIpool ✓Train+Test 76.82±0.15 68.50±0.58 77.18±0.18 77.04±0.16 49.85±0.65 69.19±0.36 69.64±0.33
TIpool-RA ✓Train+Test 74.78±0.20 73.79±0.48 75.89±0.17 75.07±0.16 59.57±0.57 67.78±0.20 67.64±0.18

Table 8: Effect of augmentation and including gradient based orbit mapping (OM) on
robustness to rotations with different interpolations for CUB200 classification using
Resnet50. Shown are clean accuracy on standard test set and average and worst-case
accuracies on rotated test set. Mean and standard deviations over 5 runs are reported.

learned ETN also exhibits similar behavior. While our approach is also affected
by the interpolation effects, the vulnerability to nearest neighbor interpolation
is ameliorated when using rotation augmentation. We obtain best results using
orbit mapping in conjunction with the discrete invariant approach [36]

Effect of Network architecture for CIFAR10 To investigate the effectiveness
of our approach, we experiment three different network architectures: i) a linear
network, ii) a 5-layer convnet ii) a Resnet18. We compare the performance of
our orbit mapping approach with training schemes, i.e. augmentation and adver-
sarial training for rotational invariance in Tab. 9. For all the three architectures
considered, our orbit mapping together with rotation augmentation consistently
results in the most accurate predictions in the worst case.

Comparing Computation Complexity for CIFAR10 In Tab. 10, the train-
ing times using different approaches are compared for rotation-invariant CIFAR10
classification. It can be noted that the proposed gradient based orbit mapping
is significantly easier and computationally cheaper to train in comparison with
other approaches for incorporating invariance. In contrast, adversarial training is
the most computationally expensive approach.

Comparing Computational Complexity of ROTMNIST Tab. 11 compares
the computational complexity of the D4/C4 and D16/C16 models. The D16/C16
model has significantly higher computational complexity than the D4/C4 model,
though the number of learnable parameters is nearly same. The network size of
D16/C16 network s higher due to more rotated copies of the filters, resulting in
larger training and inference times. Orbit mapping adds no learnable parameters
and increases training time very marginally (∼0.3 seconds/epoch). Training times
correspond to runs on a machine with single Titan-RTX GPU.



A Simple Strategy to Provable Invariance 23

Network Train OM Std. Average Worst-case
Nearest Bilinear Bicubic Nearest Bilinear Bicubic

Linear

Std.
✗ 38.89±0.17 25.31±0.21 25.57±0.22 25.48±0.24 2.50±0.11 3.56±0.17 3.26±0.11
✓Train+Test 31.87±0.10 31.25±0.04 31.58±0.05 31.33±0.04 13.08±0.23 18.85±0.21 18.21±0.21

RA
✗ 29.73±0.18 30.66±0.03 30.77±0.03 30.72±0.03 14.30±0.42 18.31±0.29 16.94±0.37
✓Test 30.60±0.13 30.52±0.07 30.65±0.08 30.54±0.09 16.83±0.47 21.17±0.28 20.37±0.26
✓Train+Test 31.06±0.26 31.07±0.11 31.27±0.10 31.13±0.09 19.19±0.28 24.25±0.31 23.68±0.31

Advers. ✗ 28.82±0.77 29.46±0.60 29.62±0.56 29.36±0.56 11.45±0.81 14.20±0.93 13.65±0.55

Convnet

Std.
✗ 86.12±0.33 32.01±0.32 35.97±0.26 38.15±0.36 0.85±0.09 0.57±0.06 0.89±0.14
✓Train+Test 76.13±0.96 64.34±0.35 71.21±0.96 74.61±0.84 25.78±0.49 49.60±0.79 55.57±0.81

RA
✗ 75.03±0.99 71.77±0.84 65.45±0.66 70.22±0.66 27.96±0.50 27.06±0.61 32.51±0.53
✓Test 70.12±0.64 67.64±0.55 61.03±0.67 66.09±0.71 39.01±0.57 42.88±0.90 49.39±0.68
✓Train+Test 74.30±0.77 73.24±0.58 69.52±0.53 73.38±0.59 46.25±0.54 53.36±0.57 59.04±0.53

Advers. ✗ 72.96±0.95 62.08±0.59 74.29±0.88 73.86±0.76 26.24±0.43 50.99±0.54 52.46±0.51

Resnet18

Std.
✗ 93.98±0.32 35.12±0.81 40.06±0.44 42.81±0.50 0.79±0.38 1.31±0.13 2.22±0.17
✓ Train+Test 87.99±0.43 72.40±0.33 84.12±0.55 86.61±0.49 34.57±0.94 68.60±0.81 74.49±0.84

RA
✗ 85.54±0.72 80.47±0.74 75.99±0.72 79.47±0.65 45.50±0.83 44.71±0.74 50.50±0.78
✓ Test 79.26±0.42 74.93±0.51 69.31±0.65 73.94±0.63 48.93±0.75 52.18±0.91 58.69±0.78
✓ Train+Test 85.40±0.57 84.37±0.58 81.82±0.59 84.82±0.52 66.22±0.75 71.09±1.01 76.44±0.89

Advers. ✗ 69.32±1.61 61.73±1.12 68.54±0.68 68.00±0.31 36.95±0.97 50.21±0.55 49.73±0.98

Table 9: Comparing rotational invariance using training schemes vs. orbit mapping
for CIFAR10 classification using i) Linear network ii) 5-layer Convnet iii) Resnet18.
Shown are the mean clean accuracy and the average and worst case accuracies when
test images are rotated in steps of 1 degree. The mean and standard deviation values
over 5 runs are reported.

Method Std. STN ETN Adv. OM

Train-time/epoch 18.05±0.05 18.90±0.05 18.89±0.07 72.09±0.18 18.59±0.04
Table 10: Average training time per epoch in seconds for different approaches to incorpo-
rate rotation invariance, with Resnet18 as base architecture for CIFAR10 classification.
Training time correspond to runs on a machine with single Titan-RTX GPU.

OM
D4/C4 D16/C16

Train-time/epoch Train-time/epoch

✗ 4.47 s 41.89 s
✓ 4.78 s 42.08 s

Table 11: Comparing computational complexity of D4/C4 and D16/C16 models. Orbit
mapping adds no learnable parameters and increases training time very marginally
(∼0.3 seconds/epoch). Training times correspond to runs on a machine with single
Titan-RTX GPU.



24 Gandikota et al.

References

1. Russakovsky, O., Deng, J., Su, H., Krause, J., Satheesh, S., Ma, S., Huang, Z.,
Karpathy, A., Khosla, A., Bernstein, M., Berg, A.C., Fei-Fei, L.: ImageNet Large
Scale Visual Recognition Challenge. International Journal of Computer Vision
(IJCV) 115 (2015) 211–252

2. Tensmeyer, C., Martinez, T.: Improving invariance and equivariance properties of
convolutional neural networks. (2016)

3. Olah, C., Cammarata, N., Voss, C., Schubert, L., Goh, G.: Naturally occurring
equivariance in neural networks. Distill 5 (2020) e00024–004

4. Lenc, K., Vedaldi, A.: Understanding image representations by measuring their
equivariance and equivalence. International Journal of Computer Vision 127 (2018)
456–476

5. Engstrom, L., Tsipras, D., Schmidt, L., Madry, A.: A rotation and a translation
suffice: Fooling cnns with simple transformations. arXiv preprint arXiv:1712.02779
1 (2017) 3

6. Finlayson, S.G., Bowers, J.D., Ito, J., Zittrain, J.L., Beam, A.L., Kohane, I.S.:
Adversarial attacks on medical machine learning. Science 363 (2019) 1287–1289

7. Zhao, Y., Wu, Y., Chen, C., Lim, A.: On isometry robustness of deep 3d point
cloud models under adversarial attacks. In: IEEE/CVF Conference on Computer
Vision and Pattern Recognition. (2020)

8. Lang, I., Kotlicki, U., Avidan, S.: Geometric adversarial attacks and defenses on
3d point clouds. In: 2021 International Conference on 3D Vision (3DV). (2021)

9. Simard, P., Victorri, B., LeCun, Y., Denker, J.: Tangent prop-a formalism for
specifying selected invariances in an adaptive network. In: Advances in neural
information processing systems. Volume 4. (1991)

10. Engstrom, L., Tran, B., Tsipras, D., Schmidt, L., Madry, A.: Exploring the landscape
of spatial robustness. In: International Conference on Machine Learning. (2019)
1802–1811

11. Wang, R., Yang, Y., Tao, D.: Art-point: Improving rotation robustness of point
cloud classifiers via adversarial rotation. In: IEEE/CVF Conference on Computer
Vision and Pattern Recognition (CVPR). (2022) 14371–14380

12. Yang, F., Wang, Z., Heinze-Deml, C.: Invariance-inducing regularization using worst-
case transformations suffices to boost accuracy and spatial robustness. Advances in
Neural information processing systems (2019) 14757–14768

13. Anselmi, F., Leibo, J.Z., Rosasco, L., Mutch, J., Tacchetti, A., Poggio, T.: Unsu-
pervised learning of invariant representations. Theoretical Computer Science 633
(2016) 112–121

14. Noroozi, M., Favaro, P.: Unsupervised learning of visual representations by solving
jigsaw puzzles. In: European conference on computer vision, Springer (2016) 69–84

15. Komodakis, N., Gidaris, S.: Unsupervised representation learning by predicting
image rotations. In: International Conference on Learning Representations (ICLR).
(2018)

16. Zhang, L., Qi, G.J., Wang, L., Luo, J.: Aet vs. aed: Unsupervised representation
learning by auto-encoding transformations rather than data. In: IEEE/CVF
Conference on Computer Vision and Pattern Recognition. (2019) 2547–2555

17. Gu, J., Yeung, S.: Staying in shape: learning invariant shape representations using
contrastive learning. In de Campos, C., Maathuis, M.H., eds.: Conference on
Uncertainty in Artificial Intelligence. Volume 161., PMLR (2021) 1852–1862



A Simple Strategy to Provable Invariance 25

18. Wilk, M.v.d., Bauer, M., John, S., Hensman, J.: Learning invariances using the
marginal likelihood. In: Advances in Neural information processing systems. (2018)
9960–9970

19. Benton, G.W., Finzi, M., Izmailov, P., Wilson, A.G.: Learning invariances in neural
networks from training data. In: Advances in Neural information processing systems.
(2020)

20. Sheng, Y., Shen, L.: Orthogonal fourier–mellin moments for invariant pattern
recognition. Journal of the Optical Society of America 11 (1994) 1748–1757

21. Yap, P.T., Jiang, X., Chichung Kot, A.: Two-dimensional polar harmonic transforms
for invariant image representation. IEEE Transactions on Pattern Analysis and
Machine Intelligence 32 (2010) 1259–1270

22. Tan, T.: Rotation invariant texture features and their use in automatic script
identification. IEEE Transactions on Pattern Analysis and Machine Intelligence 20
(1998) 751–756

23. Lazebnik, S., Schmid, C., Ponce, J.: A sparse texture representation using local
affine regions. IEEE Transactions on Pattern Analysis and Machine Intelligence 27
(2005) 1265–1278

24. Manthalkar, R., Biswas, P.K., Chatterji, B.N.: Rotation and scale invariant texture
features using discrete wavelet packet transform. Pattern Recognition Letters 24
(2003) 2455–2462

25. Bruna, J., Mallat, S.: Invariant scattering convolution networks. IEEE Transactions
on Pattern Analysis and Machine Intelligence 35 (2013) 1872–1886

26. Sifre, L., Mallat, S.: Rotation, scaling and deformation invariant scattering for
texture discrimination. In: IEEE Conference on Computer Vision and Pattern
Recognition (CVPR). (2013)

27. Oyallon, E., Mallat, S.: Deep roto-translation scattering for object classification. In:
IEEE Conference on Computer Vision and Pattern Recognition (CVPR). (2015)

28. Cohen, T., Welling, M.: Group equivariant convolutional networks. In: International
conference on machine learning. (2016) 2990–2999

29. Worrall, D.E., Garbin, S.J., Turmukhambetov, D., Brostow, G.J.: Harmonic
networks: Deep translation and rotation equivariance. In: The IEEE Conference on
Computer Vision and Pattern Recognition (CVPR). (2017)

30. Weiler, M., Cesa, G.: General E(2)-Equivariant Steerable CNNs. In: Advances in
Neural information processing systems. (2019)

31. Zhang, J., Yu, M.Y., Vasudevan, R., Johnson-Roberson, M.: Learning rotation-
invariant representations of point clouds using aligned edge convolutional neural
networks. In: 2020 International Conference on 3D Vision (3DV), IEEE (2020)
200–209

32. Yu, R., Wei, X., Tombari, F., Sun, J.: Deep positional and relational feature learning
for rotation-invariant point cloud analysis. In: European Conference on Computer
Vision. (2020)

33. Balunovic, M., Baader, M., Singh, G., Gehr, T., Vechev, M.: Certifying geometric
robustness of neural networks. Advances in Neural information processing systems
32 (2019)

34. Fischer, M., Baader, M., Vechev, M.: Certified defense to image transformations
via randomized smoothing. In: Advances in Neural information processing systems.
Volume 33. (2020)

35. Manay, S., Cremers, D., Hong, B.W., Yezzi, A.J., Soatto, S.: Integral invariants for
shape matching. IEEE Transactions on Pattern Analysis and Machine Intelligence
28 (2006) 1602–1618



26 Gandikota et al.

36. Laptev, D., Savinov, N., Buhmann, J.M., Pollefeys, M.: Ti-pooling: transformation-
invariant pooling for feature learning in convolutional neural networks. In: IEEE
conference on computer vision and pattern recognition. (2016) 289–297

37. Ravanbakhsh, S., Schneider, J., Poczos, B.: Equivariance through parameter-sharing.
In: International Conference on Machine Learning, PMLR (2017) 2892–2901

38. Xiao, Z., Lin, H., Li, R., Geng, L., Chao, H., Ding, S.: Endowing deep 3d models with
rotation invariance based on principal component analysis. In: IEEE International
Conference on Multimedia and Expo (ICME), IEEE (2020)

39. Li, F., Fujiwara, K., Okura, F., Matsushita, Y.: A closer look at rotation-invariant
deep point cloud analysis. In: International Conference on Computer Vision (ICCV).
(2021) 16218–16227

40. Rempe, D., Birdal, T., Zhao, Y., Gojcic, Z., Sridhar, S., Guibas, L.J.: Caspr:
Learning canonical spatiotemporal point cloud representations. Advances in Neural
information processing systems 33 (2020) 13688–13701

41. Wang, H., Sridhar, S., Huang, J., Valentin, J., Song, S., Guibas, L.J.: Normalized
object coordinate space for category-level 6d object pose and size estimation.
In: IEEE/CVF Conference on Computer Vision and Pattern Recognition. (2019)
2642–2651

42. Sun, W., Tagliasacchi, A., Deng, B., Sabour, S., Yazdani, S., Hinton, G.E., Yi,
K.M.: Canonical capsules: Self-supervised capsules in canonical pose. Advances in
Neural information processing systems 34 (2021)

43. Spezialetti, R., Stella, F., Marcon, M., Silva, L., Salti, S., Di Stefano, L.: Learning
to orient surfaces by self-supervised spherical cnns. Advances in Neural information
processing systems 33 (2020)

44. Sajnani, R., Poulenard, A., Jain, J., Dua, R., Guibas, L.J., Sridhar, S.: Condor:
Self-supervised canonicalization of 3d pose for partial shapes. In: IEEE/CVF
Conference on Computer Vision and Pattern Recognition. (2022) 16969–16979

45. Rehman, H.Z.U., Lee, S.: Automatic image alignment using principal component
analysis. IEEE Access 6 (2018) 72063–72072

46. Jafari-Khouzani, K., Soltanian-Zadeh, H.: Radon transform orientation estimation
for rotation invariant texture analysis. IEEE Transactions on Pattern Analysis and
Machine Intelligence 27 (2005) 1004–1008

47. Jaderberg, M., Simonyan, K., Zisserman, A., Kavukcuoglu, K.: Spatial transformer
networks. In: Advances in Neural information processing systems. (2015)

48. Tai, K.S., Bailis, P., Valiant, G.: Equivariant transformer networks. In: International
Conference on Machine Learning, PMLR (2019) 6086–6095

49. Esteves, C., Allen-Blanchette, C., Zhou, X., Daniilidis, K.: Polar transformer
networks. In: International Conference on Learning Representations. (2018)

50. Marcos, D., Volpi, M., Komodakis, N., Tuia, D.: Rotation equivariant vector field
networks. In: IEEE International Conference on Computer Vision. (2017) 5048–5057

51. Veeling, B.S., Linmans, J., Winkens, J., Cohen, T., Welling, M.: Rotation equivariant
cnns for digital pathology. In: International Conference on Medical image computing
and computer-assisted intervention, Springer (2018) 210–218

52. Marcos, D., Volpi, M., Tuia, D.: Learning rotation invariant convolutional filters for
texture classification. In: International Conference on Pattern Recognition (ICPR),
IEEE (2016) 2012–2017

53. Fasel, B., Gatica-Perez, D.: Rotation-invariant neoperceptron. In: International
Conference on Pattern Recognition (ICPR). Volume 3., IEEE (2006) 336–339

54. Henriques, J.F., Vedaldi, A.: Warped convolutions: Efficient invariance to spatial
transformations. In: International Conference on Machine Learning, PMLR (2017)
1461–1469



A Simple Strategy to Provable Invariance 27

55. Wu, Z., Song, S., Khosla, A., Yu, F., Zhang, L., Tang, X., Xiao, J.: 3d shapenets:
A deep representation for volumetric shape modeling. In: IEEE Conference on
Computer Vision and Pattern Recognition (CVPR). (2015)

56. Wang, P.S., Liu, Y., Guo, Y.X., Sun, C.Y., Tong, X.: O-CNN: Octree-based
Convolutional Neural Networks for 3D Shape Analysis. ACM Transactions on
Graphics (SIGGRAPH) 36 (2017)

57. Weiler, M., Geiger, M., Welling, M., Boomsma, W., Cohen, T.: 3d steerable cnns:
learning rotationally equivariant features in volumetric data. In: Advances in Neural
information processing systems. (2018) 10402–10413

58. Thomas, N., Smidt, T., Kearnes, S., Yang, L., Li, L., Kohlhoff, K., Riley, P.: Tensor
field networks: Rotation-and translation-equivariant neural networks for 3d point
clouds. arXiv preprint arXiv:1802.08219 (2018)

59. Fuchs, F., Worrall, D., Fischer, V., Welling, M.: Se (3)-transformers: 3d roto-
translation equivariant attention networks. Advances in Neural information pro-
cessing systems 33 (2020)

60. Qi, C.R., Su, H., Mo, K., Guibas, L.J.: Pointnet: Deep learning on point sets for 3d
classification and segmentation. In: Conference on Computer Vision and Pattern
Recognition (CVPR). (2017)

61. Qi, C.R., Yi, L., Su, H., Guibas, L.J.: Pointnet++: Deep hierarchical feature
learning on point sets in a metric space. In: Advances in Neural information
processing systems. (2017)

62. Zhang, Y., Rabbat, M.: A graph-cnn for 3d point cloud classification. In: In-
ternational Conference on Acoustics, Speech and Signal Processing (ICASSP).
(2018)

63. Horie, M., Morita, N., Hishinuma, T., Ihara, Y., Mitsume, N.: Isometric transfor-
mation invariant and equivariant graph convolutional networks. In: International
Conference on Learning Representations. (2020)

64. Satorras, V.G., Hoogeboom, E., Welling, M.: E(n) equivariant graph neural networks.
In Meila, M., Zhang, T., eds.: International Conference on Machine Learning. Volume
139., PMLR (2021) 9323–9332

65. Esteves, C., Allen-Blanchette, C., Makadia, A., Daniilidis, K.: Learning so (3)
equivariant representations with spherical cnns. In: European Conference on
Computer Vision (ECCV). (2018) 52–68

66. Rao, Y., Lu, J., Zhou, J.: Spherical fractal convolutional neural networks for point
cloud recognition. In: IEEE/CVF Conference on Computer Vision and Pattern
Recognition. (2019) 452–460

67. Deng, H., Birdal, T., , Ilic, S.: Ppf-foldnet: Unsupervised learning of rotation
invariant 3d local descriptors. In: European Conference on Computer Vision
(ECCV). (2018)

68. Zhao, Y., Birdal, T., Deng, H., Tombari, F.: 3d point capsule networks. In:
Conference on Computer Vision and Pattern Recognition (CVPR). (2019)

69. Monti, F., Boscaini, D., Masci, J., Rodolá, E., Svoboda, J., Bronstein, M.M.:
Geometric deep learning on graphs and manifolds using mixture model cnns. In:
IEEE Conference on Computer Vision and Pattern Recognition (CVPR). (2016)

70. Hanocka, R., Hertz, A., Fish, N., Giryes, R., Fleishman, S., Cohen-Or, D.: Meshcnn:
A network with an edge. ACM Transactions on Graphics (TOG) 38 (2019) 90:1–
90:12

71. Sharp, N., Attaiki, S., Crane, K., Ovsjanikov, M.: Diffusion is all you need for
learning on surfaces. CoRR abs/2012.00888 (2020)



28 Gandikota et al.

72. Ovsjanikov, M., Ben-Chen, M., Solomon, J., Butscher, A., Guibas, L.: Functional
maps: a flexible representation of maps between shapes. ACM Transactions on
Graphics 31 (2012)

73. Pinkall, U., Polthier, K.: Computing discrete minimal surfaces and their conjugates.
Experimental Mathematics (1993)

74. Litany, O., Remez, T., Rodolà, E., Bronstein, A., Bronstein, M.: Deep functional
maps: Structured prediction for dense shape correspondences. In: International
Conference on Computer Vision (ICCV). (2017)

75. Eisenberger, M., Toker, A., Leal-Taixé, L., Cremers, D.: Deep shells: Unsupervised
shape correspondence with optimal transport. In: Advances in Neural information
processing systems. (2020)

76. Huang, R., Rakotosaona, M.J., Achlioptas, P., Guibas, L., Ovsjanikov, M.: Opera-
tornet: Recovering 3d shapes from difference operators. In: International Conference
on Computer Vision (ICCV). (2019)

77. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition.
In: IEEE conference on computer vision and pattern recognition. (2016) 770–778

78. Tschandl, P., Rosendahl, C., Kittler, H.: The ham10000 dataset, a large collection
of multi-source dermatoscopic images of common pigmented skin lesions. Scientific
data 5 (2018) 1–9

79. Brock, A., De, S., Smith, S.L., Simonyan, K.: High-performance large-scale image
recognition without normalization. arXiv preprint arXiv:2102.06171 (2021)

80. Wah, C., Branson, S., Welinder, P., Perona, P., Belongie, S.: The caltech-ucsd
birds-200-2011 dataset. (2011)

81. Weiler, M., Geiger, M., Welling, M., Boomsma, W., Cohen, T.: 3d steerable cnns:
Learning rotationally equivariant features in volumetric data. In: Advances in
Neural information processing systems. (2018)

82. Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980 (2014)

83. Wu, Z., Song, S., Khosla, A., Yu, F., Zhang, L., Tang, X., Xiao, J.: 3d shapenets:
A deep representation for volumetric shapes. In: IEEE conference on computer
vision and pattern recognition. (2015) 1912–1920

84. Yan, X.: Pointnet/pointnet++ pytorch.
https://github.com/yanx27/Pointnet Pointnet2 pytorch (2019)


	A Simple Strategy to Provable Invariance via Orbit Mapping

