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Abstract

Following their success in visual recognition tasks, Vi-
sion Transformers(ViTs) are being increasingly employed
forimage restoration. As a few recent works claim that ViTs
for image classification also have better robustness proper-
ties, we investigate whether the improved adversarial ro-
bustness of ViTs extends to image restoration. We consider
the recently proposed Restormer model, as well as NAFNet
and the “Baseline network” which are both simplified ver-
sions of a Restormer. We use Projected Gradient Descent
(PGD) and CosPGD, a recently proposed adversarial at-
tack tailored to pixel-wise prediction tasks for our robust-
ness evaluation. Our experiments are performed on real-
world images from the GoPro dataset for image deblurring.
Our analysis indicates that contrary to as advocated by ViTs
in image classification works, these models are highly sus-
ceptible to adversarial attacks. We attempt to improve their
robustness through adversarial training. While this yields a
significant increase in robustness for Restormer, results on
other networks are less promising. Interestingly, the design
choices in NAFNet and Baselines, which were based on iid
performance, and not on robust generalization, seem to be
at odds with the model robustness. Thus, we investigate this
further and find a fix.

1. Introduction

Ground Truth Restormer

Baseline network
A AN L

Figure 1. Comparing images reconstructed by all considered mod-

els after 5 iterations of CosPGD attack . We observe strong spec-
tral artifacts in the reconstructed images.

The goal of image restoration is to recover high-quality
images from degraded observations. The degradation could
be due to a variety of factors such as noise, blur, artifacts
due to jpeg compression, raindrops, haze, and other fac-
tors. Earlier methods for image restoration [38, 6, 11, 14, 3]
employed carefully chosen priors and degradation models
to derive degradation-specific restoration algorithms. Yet,



such methods are limited by the strength of the image prior
and the accuracy in modeling or estimating the degrada-
tion operator. The past decade saw a large-scale adoption
of deep learning methods to image restoration [44], which
outperformed the classical approaches. Recent approaches
[61, 54, 49] successfully adopt novel architectures such as
Transformers [51, 16] and MLP-mixers [47] for restoration.

Yet, CNNs, MLP-mixers as well as Transformer have
been shown to be vulnerable to carefully crafted adversarial
examples [31, 18]. Recent work [1, 9, 57, 17] also confirms
the existence of such vulnerabilities in deep learning-based
image restoration. Yet, existing works mainly analyze the
robustness of CNN-based restoration methods. Conversely,
with the introduction of novel network architectures such
as vision Transformers [29, 16], MLP mixers [47], and im-
proved convolutional architectures [30, 26] which outper-
form the earlier networks such as ResNets [21], there have
been several studies on the robustness of these new architec-
tures [5, 41, 46, 13, 1]. To the best of our knowledge, very
limited works [13, 4] investigate the effect of architectural
components and training recipes. Existing works focus on
image classification and do not study restoration. Thus to
bridge this gap we investigate the adversarial robustness of
recent Transformers specialized to image restoration.

In this work we study the adversarial robustness of
Transformer based restoration networks, Restormer [61],
and two architectures introduced in [7] the Baseline net-
work and the Non-linear Activation free Network (NAFNet),
both obtained by simplifying the original Restormer, with
modifications to the channel attention and activation func-
tions. Further, to better understand the architectural design
choices made by [7], we include an Intermediate network
also considered by [7] which serves as a step between the
Baseline network and NAFNet. This study is particularly
interesting as recent works [56, 4] indicate that the choice of
activation function significantly impacts adversarial robust-
ness. We study the network robustness under standard and
adversarial attacks, by considering ¢, perturbations crafted
using PGD attack [31] and CosPGD attack proposed in [ 1]
for dense prediction tasks. We conduct our experiments on
dynamic deblurring using the Go-Pro dataset [34].

Our experiments reveal that under standard training set-
tings, Transformer based restoration networks are not robust
to adversarial attacks in general. As shown in Figure 1, the
networks also exhibit distinct artifacts in the reconstructions
under attack. The images from the Baseline network and
the Restormer exhibit severe ringing artifacts [33], whereas
the NAFNet reconstructs images with very strong grid and
color artifacts under adversarial attack. We find that adver-
sarial training can largely reduce the artifacts and signifi-
cantly improve the robustness of all three networks. How-
ever, the recently proposed NAFNet and Baseline network
fail to rival the performance of Restormer, which leads us to

contemplate the importance of the architectural components
necessary to achieve robust generalization.

The main contributions of this work can be summarized
as follows:

* We investigate the robustness of recently proposed
Transformer based architectures for image restoration,
namely image deblurring.

* We analyze the quality of the restored images and the
spectral artifacts introduced by models under the afore-
mentioned adversarial attacks.

* We understand the effects of defense strategy against
adversarial attacks that consequently reduce the spec-
tral artifacts in reconstructed images.

* Lastly, we study the effect of certain architectural de-
sign choices in the recently proposed state-of-the-art
image restoration model, NAFNet, to improve their ro-
bustness.

2. Related Work

Transformers for Image Restoration The past decade
saw significant improvements in image restoration, largely
owing to the adoption of deep networks trained on large
datasets of clean and degraded images. While earlier
restoration networks largely adopted CNN-based architec-
tures, subsequent works also explored the use of attention
mechanisms inside CNNs [62, 35, 45]. We refer [44] for
a detailed survey on deep learning approaches to restora-
tion. More recently, vision Transformers [29, 16] are in-
creasingly adopted for several restoration tasks. While [27,

, 54, 12, 55] adopt Transformers for generic restoration
tasks, a few works focus on specific restoration tasks by
including such as deblurring [48], deraining [28], dehaz-
ing [20, 43], removing degradations due to adverse weather
conditions [50]. These networks typically employ encoder-
decoder-based architectures with Transformer blocks com-
bined with convolutions.

Adversarial Robustness of Image Restoration. = While
the adversarial robustness of deep networks for image
recognition is extensively studied, a few works also study
the robustness of image restoration networks to adversarial
attacks. [9, 10, 60] evaluate adversarial robustness of deep
learning-based image super-resolution. While [10] propose
adversarial regularization, [60] propose frequency domain
adversarial example detection, combined with random fre-
quency masking to improve robustness. [|7] evaluate ad-
versarial robustness of deblurring networks with and with-
out the knowledge of the blur operator, and introduce tar-
geted attacks on restoration. In [8], the adversarial robust-
ness of image-to-image translation models is studied, in-



cluding restoration tasks, and adversarial training and dif-
ferent transformation-based defenses are evaluated. Yan
et al. [57] investigate the robustness of image denoising
to zero-mean adversarial perturbations and propose train-
ing with clean and adversarial samples to improve robust-
ness. Yu et al. [59] investigate adversarial robustness of
deep learning-based rain removal, and study the effect of
architecture and training choices on robustness. Yet, these
works do not focus on the more recent Transformer based
restoration networks. With the notable exception of [1],
where they simply benchmark the adversarial performance
of the image restoration networks recently proposed by [7].

Robustness of Transformers & other modern architec-
tures. Recently, Vision Transformers (ViTs) [16, 29]
have been successfully applied to image recognition, out-
performing the older ResNets. Follow-up works modified
training schemes and architectures leading to more perfor-
mant CNN architectures such as ConvNext [30], and hybrid
models combining components of ViTs and CNNs [2]. Fol-
lowing the introduction of these novel architectures, several
works examined the robustness properties of these models.
[42, 5, 41, 36] suggest Transformers have better adversar-
ial robustness than CNNs. However, [32] shows that vi-
sion Transformers are also as vulnerable as CNNs under
strong attacks. [4] show that CNNs can achieve similar
adversarial robustness as Transformers when trained using
similar training recipes, yet Transformers still outperform
CNNs on out-of-distribution generalization. [46] bench-
mark for robustness dependent on the network architecture.
They find that Transformers are best suited against adver-
sarial attacks while being extremely vulnerable to common
corruptions [22] and system noise. Conversely, CNNs are
more robust against common corruptions and system noise
while being weakest against adversarial attacks. Further,
they show that MLP-Mixers are not the best and also not
the worst for both cases.

In their work, [37] benchmark the robustness of state-
of-the-art Transformers and CNN architectures and show
that CNNs using ConvNext architecture can be at least as
robust as Transformers for image recognition. Meanwhile
[13] analyzes the effect of different architectural compo-
nents such as patches, convolution, activation, and attention,
and demonstrates that ConvNexts have better adversarial ro-
bustness than ResNets. [56] observe that smooth activation
functions improve adversarial training as they enable better
gradient updates to compute harder adversarial examples.
Subsequent works [4, 13] also confirm improvement in ro-
bustness when GELU [23] activation functions are used in
adversarial training. While [4] attribute significant robust-
ness gains in Transformers to the self-attention mechanism,
[52] identify other architectural components, including, the
use of patches, larger kernels, reducing activation and nor-

malization layers which when incorporated into CNNs lead
to out of distribution robustness at least on par with Trans-
formers without the use of attention.

In contrast, our work focuses on the investigation of the
robustness of several recent Transformer based restoration
models and shows interesting effects of adversarial attacks
that can be attributed to different building modules of such
models.

3. Methodology

Following, we describe the attack framework used and
the defense strategy used to combat the vulnerabilities of
the architectures exposed by the adversarial attacks.

3.1. Attack Framework

Let x denote the ground-truth image, which is corrupted
by a possibly non-linear degradation operator A, resulting
in an observation yClea“, which can be expressed as

yclean — A(X) ) (1 )

Let Gy be a (Transformer-based) neural network parameter-
ized by @ trained to recover x from ydean. In this work, we
are interested in studying the stability of Gy to adversarial
attacks that aim to degrade its performance through visually
imperceptible changes to the inputs [18, 31]. We evaluate
the robustness to attacks using additive perturbations ¢ with
¢p-norm constraints. We generate the adversarial perturba-
tions based on two powerful attack methods CosPGD [1]
developed for dense prediction tasks, and PGD attack [31],
both of which we detail in the following. The objective of
the attack is to maximize the deviation of the network out-
put from the ground truth as measured by a loss function L,
subject to £, norm constraints on the perturbation:

max%mize L(Go(y™™™ +6), x) s.t. |6], <e. (2

PGD. PGD is an iterative adversarial attack, where each
sample is perturbed for a fixed amount of attack iterations
(steps) with the intention of maximizing the loss further
with each attack step. A single attack step in the PGD attack
[31]1s given as follows,

y et = y* N e signVgaa, L(Go(y*1), %) (3)
5= ¢s(yadvt+1 o yclean)
yadvt+1 _ ¢r(yclean +5)

where the adversarial example y®Vi+1 at step t+1, is up-
dated using the adversarial example from the previous step
y2dve ¥ represents the gradient operation, « is the step
size for the perturbation, ¢ is denotes projection onto the
appropriate £,-norm ball of radius e, depending on the £,
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Figure 2. Modified visualization of repeating blocks of the architectures from [7] the considered Intermediate network from [7] (please

refer to (c)) and Intermediate + ReLU network (please refer to (d)).

norm constraints on d, and ¢" clips the adversarial exam-
ple to lie in the valid intensity range of images (between [0,
1]). Prior works evaluating the adversarial robustness of im-
age restoration networks consider L to be the reconstruction
loss (MSE loss) to obtain adversarial examples maximizing
the reconstruction error.

CosPGD. Instead of directly utilizing the averaged pixel-
wise losses in PGD attack steps, [1] propose to weigh the
pixel-wise losses using the cosine similarity between the
network output and the ground truth (both scaled by soft-
max), to reduce the importance of the pixels which already
have a large error in the previous iterations, and enable the
attack to focus on the pixels with low error. For the task of
restoration (a regression task), CosPGD attack steps for an
untargeted attack are given as:

Xath _ ge (yadvt) (4)
Leos = Z cossim (W (x*4Vt), ¥(x)) ® L(x*t, x)
y2 Vet =y 4o sign'Vaav, Leos
§=¢° (yathJrl _ yclean)
y2dvert — ¢T(yclean +4),

where V¥ is the softmax function, ® denotes point-wise mul-
tiplication, and the cosine similarity (cossim) is given by
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[1] demonstrate that this approach results in a stronger at-
tack for pixel-wise regression tasks than a PGD attack. We
use both PGD and CosPGD in our robustness evaluation.

cossim(W, V) =

3.2. Architectures: from Restormer to NAFNet

We evaluate the adversarial robustness of Restormer
[61], a Transformer based architecture for image restora-
tion and two architectures introduced in [7] by modifying
the Restormer architecture. Restormer [01] has a UNet
[39] like encoder-decoder architecture, using multi-head
channel-wise attention modules, gated linear units [15]
and depth-wise convolutions in the feed-forward network.
This network achieved state-of-the-art performance in im-
age restoration at the time of its publication. The authors
in [7] investigate whether it is possible to retain the perfor-
mance of Restormer, with a simplified architecture. After
a thorough ablation study, they propose a simplified Base-
line network that improved upon the SOTA performance.
The Baseline network utilizes GELU activations [23] and
replaces multi-headed self-attention in [61] with a channel



attention module [25]. Without loss in i.i.d. performance,
they further simplify this architecture by removing activa-
tion functions altogether, replacing GELU with a simple
gate which performs element-wise product of feature maps,
and replacing the channel attention by a simplified channel
attention without activation functions. The resulting net-
work is referred to as a Nonlinear Activation-Free Network
(NAFNet). In contrast to [7] who focus on performance
with clean inputs, we analyze the adversarial robustness of
these networks, which also allows us to evaluate the effect
of different activation functions and attention mechanisms
on the robustness of restoration transformers. In Figure
1, we observe that NAFNet has significantly different ar-
tifacts in the reconstructed images compared to Restormer
and the Baseline network. One might simply hypothesize
that these strange artifacts which appear to be the cumula-
tive effect of aliasing and color mixing are due to the use
of ‘Simple Gate’ in place of a non-linear activation function
like GELU. To confirm this hypothesis we additionally con-
sider an Intermediate network, from [7]. In this Intermedi-
ate network we replace the channel attention in the baseline
network with the simplified channel attention but retain the
GELU activation. Additionally, to better understand the role
of non-linear activation functions in this context, we con-
sider an architecture the same as the Intermediate network
but with ReL.U activations instead of GELU. In Figure 2,
we modify the visualization by [7], to present the repeating
blocks of all the considered architectures in our work.

3.3. Defenses

As discussed in Section 1, we observe in Figure | that
all considered architectures are vulnerable to adversarial at-
tacks. Prior work [18, 31, 19] has shown that adversarial
training is an effective defense against adversarial attacks.
Thus we use adversarial training as a defense strategy.

Adversarial Training. We use the FGSM attack as pro-
posed by [18] to generate adversarial samples during train-
ing. Adversarial training can be hypothesized as a min-max
problem, where we try to find perturbations for the samples
such that the loss is maximized while training the network
on these samples to minimize the loss of the model over
training iterations. PGD attack is essentially a multi-step
extension of FGSM attack, and thus the loss that FGSM at-
tack attempts to maximize remains the same. Additionally,
the attack step of FGSM is also the same as described in
Section 3.1, with one notable difference being that in the
case of an FGSM attack, the attack step size « is equal to
the permissible perturbation size of e.

While training, to avoid overfitting to adversarial sam-
ples, and enable the model to make reasonable reconstruc-
tions on unperturbed samples we use the training regime
similar to [19] and use only 50% of the sample in the train-

ing batch to generate perturbed adversarial samples and use
the other 50% samples unperturbed. Thus, the effective
learning objective is as described by Equation 6.

miniomize Z L(Go(y©leami), x;) + Z L(Go(y™'7), X;)
7 J
(6)

where the indices ¢ and j correspond to the examples from
the clean and adversarial batch splits, and FGSM adversar-
ial examples are generated as:

y I = @7 (I 4 ¢ (e - signVy, L(Go(y;), x;))) (1)
4. Experiments

In this work on image restoration, we focus on recon-
structing deblurred images using a few recently proposed
image restoration networks.

4.1. Experimental Setup

Networks.  We consider Restormer proposed by [61],
and Baseline network and NAFNet proposed by [7] with
width 32. For understanding the design choices that lead
to NAFNet producing reconstructed images with signifi-
cantly different spectral artifacts than the other considered
networks, we also consider an Intermediate network and In-
termediate + ReLU. This Intermediate network with width
32 has also been considered by [7] when discussing design
choices to arrive from the Baseline network to NAFNet.
These networks are similar to the Baseline, except it has
the “simplified channel attention” as proposed by [7] rather
than the “channel attention” used in the Baseline network.
We visualize all the considered architectures in Figure 2.
Dataset. For our experiments we use the GoPro im-
age deblurring dataset[34]. This dataset consists of 3 214
real-world images with realistic blur and their correspond-
ing ground truth (deblurred images) captured using a high-
speed camera. The dataset is split into 2 103 training images
and 1 111 test images.

Metrics. We report the PSNR and SSIM scores of the
reconstructed images w.r.t. to the ground truth images, av-
eraged over all images. PSNR stands for Peak Signal-to-
Noise ratio, a higher PSNR indicates a better quality image
or an image closer to the image to which it is being com-
pared. SSIM stands for Structural similarity[53]. A higher
SSIM score corresponds to better higher similarity between
the reconstruction and the ground-truth image.

Training Regimes.  For Restormer and its adversarial
training counterpart (‘+ADV’) we follow the training pro-
cedure used by [0 1] except due to computational limitations
we do not train on the last recommended patch size 384. For
the Baseline network, NAFNet, and its counterparts we fol-
low the training regime used by [7].

Adversarial Training. We used FGSM [ 18] adversarial
training for efficiency. The maximum allowed perturbation



Table 1. Performance of the different considered networks and
their counterparts on clean (unperturbed) GoPro test images.
While NAFNet has highest PSNR value, Restormer is slightly bet-
ter in terms of SSIM. All models slightly suffer from adversarial
training when evaluated on clean data, which is to be expected.

Architecture PSNR SSIM

Restormer 31.99 0.9635
+ ADV 30.25 0.9453
Baseline 32.48 0.9575
+ ADV 30.37 0.9355
NAFNet 32.87 0.9606
+ ADV 2991 0.9291
for the adversaries is set to € = s5-. We use ‘+ADV’ after

the model name to denote that tlzlésmodel has been trained
with FGSM adversarial training.

Adversarial Attacks. We consider PGD and CosPGD
attacks. Following the procedure by [1], we use € ~ %,
a(attack step size)= 0.01. We consider attack iterations €
{5, 10, 20} for our attacks. We use MSE loss for generating
adversarial samples for all networks.

4.2. Results

The good performance of image restoration models on
unperturbed samples is indubitably essential for possible
real-world applications. However, the generalization ability
of these models to perturbed samples has to be better under-
stood for their reliability in safety-critical applications such
as medical imaging, autonomous driving, etc. To this effect,
we study the performance of the considered networks on
both clean (unperturbed) and adversarial (perturbed) sam-
ples. Further, to overcome the observed shortcomings of
these models, we harden them using adversarial training.

As observed in Figure 1, under adversarial attack both
Restormer and Baseline network induce ringing-like arti-
facts in the restored images. However, NAFNet introduces
aliasing like grid artifacts and color mixing in the restored
images.

We report the performance of three networks along with
adversarial training over clean images in Table 1.

Further, to study the generalization ability of these net-
works we adversarially attack the networks and report the
findings in Table 2.

With standard training protocol, Restormer is marginally
more robust in comparison to the Baseline network with
fewer attack iterations, however, this difference reduces as
the number of attack iterations increases. With adversarial
training using FGSM adversarial examples, we observe im-
provement in the robustness of all three networks. Interest-
ingly, the gain in performance of Restormer when trained
with FGSM is significantly better than that of the Base-
line network and NAFNet. This indicates that Restormer

has a much higher potential of being generalizable than
both the Baseline network and NAFNet. This raises doubts
over the claims by [7] regarding the Baseline network and
NAFNet having “comparable or better performance” to the
recent state-of-the-art image restoration models. Their
claim holds true for clean samples, however with just slight
perturbation (¢ = %), the performance of their proposed
models drops significantly. Contrary to this, Intermedi-
ate+ReLU is significantly more robust, across attack iter-
ations. We discuss this further in Section 5.1.

At first, one might overlook this shortcoming, how-
ever, when considering safety-critical real-world applica-
tions like those in the medical domain for deblurring MRI
images, or in autonomous driving, such shortcomings could
be very hazardous. This is further highlighted in Figure 3
as we observe that both the Restormer and the Baseline
network introduce ringing artifacts in the reconstructed im-
ages, however, NAFNet introduces very strong aliasing and
color mixing that gets worse as the attack strength increases.
While aliasing and color artifacts are significantly reduced
with adversarial training (please refer to Figure 3), the re-
constructions of NAFNet and the Baseline network are still
affected by residual ringing artifacts. Interestingly, the qual-
ity of images reconstructed by Restormer after adversarial
training is significantly better, as indicated by its perfor-
mance in terms of PSNR and SSIM in Table 2. At a low
amount of adversarial attack iterations, the artifacts present
in the images reconstructed by Restormer are negligible. To
ascertain that these observations are not specific to the ad-
versarial attack itself, we visualize the images reconstructed
after PGD attack in Figure A2 and observe a similar phe-
nomenon. This accentuates the strength of the architectural
design of Restormer and casts doubts over that of the net-
works proposed by [7].

5. Analysis and Discussion

Following we discuss the design choices made in
NAFNet and the Baseline network that constrain the per-
formance of the network against adversarial attacks, despite
employing adequate defense techniques.

5.1. Analyzing Intermediate networks

First, we study the Intermediate network to ascertain if
the spectral artifacts introduced by NAFNet in its recon-
structed images were due to replacing a non-linear acti-
vation function with a Simple Gate. This is because the
channel-wise multiplication would best explain the color
mixing artifact and the inherent wrong subsampling dur-
ing this operation and would account for the accentuated
aliasing artifacts. Further to understand the influence of
the non-linear activation, we also train the Intermediate net-
work with ReLLU activation, referred to as Intermediate +
ReLU.



Table 2. Comparison of performance of the considered models against CosPGD and PGD attacks with various attack strengths. Attack
strength increases with the number of attack iterations (itrs). Note that Intermediate + ReLU achieves reasonably robust results entirely

without adversarial training.

CosPGD PGD

Architecture 5 attack itrs 10 attack itrs 20 attack itrs 5 attack itrs 10 attack itrs 20 attack itrs
PSNR SSIM | PSNR SSIM | PSNR SSIM | PSNR SSIM | PSNR SSIM | PSNR SSIM
Restormer 11.36  0.3236 9.05 0.2242 7.59 0.1548 | 11.41 0.3256 | 9.04 0.2234 7.58 0.1543
+ ADV 24.49 0.81 23.48 0.78 21.58 0.7317 24.5 0.8079 23.5 0.7815 | 21.58 0.7315
Baseline 10.15  0.2745 8.71 0.2095 7.85 0.1685 | 10.15 0.2745 8.71 0.2094 7.85 0.1693
+ ADV 1547 0.5216 | 13.75 0.4593 | 1225 04032 | 1547 05215 | 13.75 04592 | 1224 0.4026
NAFNet 8.67 0.2264 6.68 0.1127 5.81 0.0617 | 10.27 0.3179 8.66 0.2282 5.95 0.0714
+ ADV 17.33  0.6046 | 14.68 0.509 1230  0.4046 | 15.76  0.5228 | 13.91 0.4445 | 12.73 0.3859
Intermediate 6.0224  0.0509 | 5.8166 0.0366 | 5.7199 0.0315 | 6.0225 0.0509 | 5.8158 0.0365 | 5.7173 0.0314
+ ADV 24.02 08213 | 22.01 0.7775 | 20.15 0.7286 | 24.02 0.8213 | 21.98 0.7770 | 20.15 0.7286
Intermediate + ReLU | 13.87 0.4093 | 11.63 0.3128 | 1029 0.2538 | 13.87 0.4094 | 11.62 0.3127 | 10.29 0.2542
+ ADV 2390 0.8046 | 22.46 0.7637 | 21.85 0.7484 | 2391 0.8046 | 2247 0.7638 | 21.84 0.7481

MODEL NO ATTACK 5 iterations

ey

Restormer
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Figure 3. Images reconstructed by different models after CosPGD attack

models.

We report the findings on the Intermediate networks in
Table Al. Here we observe that the Intermediate network
performs marginally worse than even NAFNet, especially
under adversarial attacks. Additionally, in Figure Al, we
visualize the images reconstructed by the Intermediate net-

10 iterations 20 iterations

. See Figure Al (Appendix A) to compare over all considered

work. Firstly, the clean images (unperturbed) have not been
deblurred significantly. Secondly, even under mild adver-
sarial attacks, the quality of the reconstructed images is
abysmal. We observe severe checkboard patterns, aliasing,
and color mixing in all images reconstructed by the Inter-



mediate network under adversarial attack. Thus, to better
understand the performance of the Intermediate network in
comparison to the Baseline network and NAFNet, we per-
form significantly weaker adversarial attacks. To this effect,
we use the CosPGD attack but with € ~ %, and consider
attack iterations € {1, 3, 5}. We again use o = 0.01.

Table 3. Comparison of performance of the Baseline network,
NAFNet, and Intermediate networks against significantly weak
CosPGD attack. For this comparison we use € ~ % and
a = 0.01 and consider fewer attack steps i.e. iterations €{1, 3, 5}

CosPGD
1 attack itrs 3 attack itrs 5 attack itrs
PSNR SSIM | PSNR SSIM | PSNR  SSIM

Architecture

Baseline 21.38  0.7520 | 17.19 0.6356 | 16.99  0.6316
NAFNet 22.54 0.7883 | 18.80 0.6948 18.46  0.6835
Intermediate 25.14  0.8410 | 10.37  0.2940 8.56 0.1812
+ ADV 2547 0.8555 | 25.16 0.8501 2532 0.8555
Intermediate + ReLU | 23.96 0.8112 | 20.96 0.7458 | 21.5777 0.7594
+ ADV 26.11 0.8616 | 25.10 0.8459 | 2486 0.8413

We report the performance of the Intermediate networks
in Table 3. Interestingly, we observe that after one ad-
versarial attack iteration, the Intermediate network is sig-
nificantly outperforming both the Baseline network and
NAFNet. However, the Intermediate network is unable to
retain this superior performance, and its performance signif-
icantly drops as we increase the attack strength (attack itera-
tions). Additionally, in Figure 4 we observe the introduction
of the same spectral artifacts for the Intermediate network as
those observed in Figure A1 and Figure A2 (please refer to
Section A). The intensity of the spectral artifacts increases
as we increase the attack strength. This phenomenon is
similar to the performance of NAFNet, which performs ad-
mirably on clean samples and under weak adversarial at-
tacks but begins to perform significantly worse as the at-
tack strength increases. This indicates that even smoothed
activation functions in the NAFNet architecture instead of
Simple Gate produce strong spectral artifacts in the recon-
structed images.

This is in striking contrast to using a non-smooth non-
linear activation function, ReLU. Interestingly, we observe
that Intermediate+ReLU is significantly more robust, and
the degradation in its performance with attack strength is
significantly lower than all considered networks, includ-
ing Restormer. In Figures A1, A2 &4 we observe that the
images reconstructed by Intermediate+ReLU, while blurry,
have significantly fewer artifacts for reasonable values of e.

Under adversarial attacks, the reconstructed images do
not have spectral artifacts similar to Intermediate network or
NAFNet, but more similar to Restormer and the Baseline. It
is only at severely higher € ~ % that spectral artifacts sim-
ilar to those produced by Intermediate network appear in the
reconstructed images from Intermediate+ReLU. Thus, the
smoothening of feature maps by the conjunction of Simpli-

MODEL

NAFNet Baseline

te Intermediat

2.

Inter

+ ReLLU
+ ADV

Figure 4. Comparing images reconstructed by different models af-
ter CosPGD attack at e ~ 2—35 Thus the attack strength is signif-
icantly weaker.

Figure 5. Two different randomly chosen images reconstructed by
Intermediate + ReLU after 5 iterations of CosPGD attack with
20

significantly higher € ~ 5=-. We observe strong spectral artifacts

similar to Intermediate network in the recovered images.

fied Channel Attention and GeLU, and Simple Gate could
be attributed to the introduction of some peculiar spectral
artifacts and loss in robustness.Using a non-smoothed non-
linear activation function like ReLU appears to be an effec-
tive mitigation technique.

Additionally, as reported in Table 2 we observe the ad-
versarial robustness of both the Intermediate network and
Intermediate+ReLU significantly increases after FGSM
training, and is comparable to Restormer. This significant
improvement in adversarial performance is also visible at
lower € attacks, please refer to Table 3 and visually shown
in Figure 4. Thus, as observed before, adversarial training is
a fix to reduce artifacts, even for the Intermediate network.

5.2. Superiority of Restormer

In their work, [7] attempt to reduce model complexity
while retaining the performance of the Restormer. However,
as shown in our work this significantly degrades the gener-



alization ability of the consequent models. As larger mod-
els tend to have a better trade-off between robustness and
accuracy [22, 24], the reduced model capacity in the Base-
line and NAFNet could contribute to the reduced robust-
ness. While reducing model complexity is certainly impor-
tant and desirable, to maintain robustness it requires a more
careful and systematic pruning of networks [58, 40, 24] than
simply dropping components. Apart from the model’s com-
plexity in terms of the number of parameters, the attention
mechanism itself could be crucial for robustness.

While the Restormer uses a multi-headed self-attention
mechanism, both the Baseline network and NAFNet use
variants of channel-attention (NAFNet uses the simplified
channel-attention proposed by [7]). As shown by [4], the
self-attention module of vision Transformers significantly
aids the Transformer based models to improve their robust-
ness. Additionally, it helps the model better utilize defense
strategies such as additional training, distillation, etc. A
similar phenomenon is observed in Table 2, as Restormer,
a vision transformer based model with a multi-headed self-
attention module is able to better utilize adversarial training
compared to the Baseline network and NAFNet.

Limitations. Adversarial training and design choices
like the use of smoothed or non-smoothed activation func-
tions against using Simple Gates certainly have a significant
impact on the performance of the considered image restora-
tion models. However, these still is a considerable gap in
the clean performance of the considered models. While the
fixes work in increasing adversarial robustness and removal
of spectral artifacts the images are far from ideal restora-
tion. As observed, the restored images after the fixes are
significantly blurry. This is a limitation of this work, as this
work was focused on removal of spectral artifacts and better
adversarial robustness.

This work is a step towards finding a fix and not an abso-
lute fix. Exploring methods other than adversarial training
for increasing adversarial robustness and removal of spec-
tral artifacts could be an interesting future work direction.

6. Conclusion

We raise concerns and awareness regarding the gener-
alization ability of deep learning models. Despite recent
methods outperforming baselines for various vision tasks,
for a method to have a significant contribution to real-
world applications, it must be reliable and robust. Thus in
this work, we highlight this shortcoming of recently pro-
posed Transformer based image restoration models. While
the models proposed by [7] perform satisfactorily for im-
age deblurring on non-perturbed samples, they fail to gen-
eralize when slight adversarial perturbations are added to
the blurred images. We acknowledge that the reduction in
model complexity compared to Restormer is a step in the

right direction, however, in this case, it comes at the expense
of model robustness. Therefore, we additionally employ ad-
versarial training in an attempt to fix this shortcoming while
also improving the quality of the reconstructed images. We
observe that adversarial training is able to reduce the spec-
tral artifacts and also results in significant improvements
in adversarial robustness of the image restoration models.
However, the extent of the improvement varied with the ar-
chitectural design decisions. Thus lastly, we investigate the
design decisions that might lead to the occurrence of spec-
tral artifacts and loss in robustness for the considered meth-
ods and find a an interesting ablation concerning the type of
activation functions used when downsampling.
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On the unreasonable vulnerability of transformers for image restoration
— and an easy fix

Supplementary Material

Following we provide additional visual and quantitative
results.

A. Additional Results

We provide sample reconstructed images from all con-
sidered networks under adversarial attacks. Figure Al
shows reconstructed images from GoPro test dataset [34]
after the CosPGD attack [I] on the models. Whereas
Figure. A2 shows reconstructed images from GoPro test
dataset [34] after the PGD attack [31] on the models.

A.l. Intermediate networks

In Table Al we report the performance of the Interme-
diate network and Intermediate + ReLU. Please note, the
performance of the Intermediate network on the clean (un-
perturbed) samples is marginally lower than that reported by
[7]. As [7] does not provide the code, pre-trained weights,
or training configuration for this intermediate step between
the Baseline network and NAFNet, our implementation is
limited to the best of our understanding.

Table Al. Comparison of performance of the considered Intermediate network on clean test images and against CosPGD and PGD attacks

with various attack strengths. The adversarial attacks were performed at € ~ 225 .
Clean CosPGD PGD

Architecture PSNR  SSIM 5 attack itrs 10 attack itrs 20 attack itrs 5 attack itrs 10 attack itrs 20 attack itrs
PSNR SSIM | PSNR SSIM | PSNR SSIM | PSNR SSIM | PSNR SSIM | PSNR  SSIM
Intermediate 29.93  0.9289 | 6.0224 0.0509 | 5.8166 0.0366 | 5.7199 0.0315 | 6.0225 0.0509 | 5.8158 0.0365 | 5.7173 0.0314
+ ADV 29.00 09154 | 24.02 0.8213 | 22.01 0.7775 | 20.15 0.7286 | 24.02 0.8213 | 2198 0.7770 | 20.15 0.7286
Intermediate + ReLU | 30.39 0.9349 | 13.87 0.4093 | 11.63 0.3128 | 10.29 0.2538 | 13.87 0.4094 | 11.62 0.3127 | 10.29 0.2542
+ADV 28.49 09072 | 2390 0.8046 | 2246 0.7637 | 21.85 0.7484 | 2391 0.8046 | 2247 0.7638 | 21.84 0.7481
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